Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Vis Exp ; (200)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870321

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is the most common murine model for multiple sclerosis (MS) and is frequently used to further elucidate the still unknown etiology of MS in order to develop new treatment strategies. The myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55) EAE model reproduces a self-limiting monophasic disease course with ascending paralysis within 10 days after immunization. The mice are examined daily using a clinical scoring system. MS is driven by different pathomechanisms with a specific temporal pattern, thus the investigation of the role of central nervous system (CNS)-resident cell types during disease progression is of great interest. The unique feature of this protocol is the simultaneous isolation of all principal CNS-resident cell types (microglia, oligodendrocytes, astrocytes, and neurons) applicable in adult EAE and healthy mice. The dissociation of the brain and the spinal cord from adult mice is followed by magnetic-activated cell sorting (MACS) to isolate microglia, oligodendrocytes, astrocytes, and neurons. Flow cytometry was used to perform quality analyses of the purified single-cell suspensions confirming viability after cell isolation and indicating the purity of each cell type of approximately 90%. In conclusion, this protocol offers a precise and comprehensive way to analyze complex cellular networks in healthy and EAE mice. Moreover, required mice numbers can be substantially reduced as all four cell types are isolated from the same mice.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Encefalomielitis , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/etiología , Ratones Endogámicos C57BL , Sistema Nervioso Central/metabolismo , Médula Espinal/metabolismo , Glicoproteína Mielina-Oligodendrócito , Encefalomielitis/complicaciones , Fragmentos de Péptidos
2.
Biol Chem ; 404(4): 355-375, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36774650

RESUMEN

Modulation of two-pore domain potassium (K2P) channels has emerged as a novel field of therapeutic strategies as they may regulate immune cell activation and metabolism, inflammatory signals, or barrier integrity. One of these ion channels is the TWIK-related potassium channel 1 (TREK1). In the current study, we report the identification and validation of new TREK1 activators. Firstly, we used a modified potassium ion channel assay to perform high-throughput-screening of new TREK1 activators. Dose-response studies helped to identify compounds with a high separation between effectiveness and toxicity. Inside-out patch-clamp measurements of Xenopus laevis oocytes expressing TREK1 were used for further validation of these activators regarding specificity and activity. These approaches yielded three substances, E1, B3 and A2 that robustly activate TREK1. Functionally, we demonstrated that these compounds reduce levels of adhesion molecules on primary human brain and muscle endothelial cells without affecting cell viability. Finally, we studied compound A2 via voltage-clamp recordings as this activator displayed the strongest effect on adhesion molecules. Interestingly, A2 lacked TREK1 activation in the tested neuronal cell type. Taken together, this study provides data on novel TREK1 activators that might be employed to pharmacologically modulate TREK1 activity.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Células Endoteliales/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Moléculas de Adhesión Celular/metabolismo
3.
J Neuroinflammation ; 19(1): 270, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348455

RESUMEN

BACKGROUND: Cladribine is a synthetic purine analogue that interferes with DNA synthesis and repair next to disrupting cellular proliferation in actively dividing lymphocytes. The compound is approved for the treatment of multiple sclerosis (MS). Cladribine can cross the blood-brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. Here, we explored compartment-specific immunosuppressive as well as potential direct neuroprotective effects of oral cladribine treatment in experimental autoimmune encephalomyelitis (EAE) mice. METHODS: In the current study, we compare immune cell frequencies and phenotypes in the periphery and CNS of EAE mice with distinct grey and white matter lesions (combined active and focal EAE) either orally treated with cladribine or vehicle, using flow cytometry. To evaluate potential direct neuroprotective effects, we assessed the integrity of the primary auditory cortex neuronal network by studying neuronal activity and spontaneous synaptic activity with electrophysiological techniques ex vivo. RESULTS: Oral cladribine treatment significantly attenuated clinical deficits in EAE mice. Ex vivo flow cytometry showed that cladribine administration led to peripheral immune cell depletion in a compartment-specific manner and reduced immune cell infiltration into the CNS. Histological evaluations revealed no significant differences for inflammatory lesion load following cladribine treatment compared to vehicle control. Single cell electrophysiology in acute brain slices was performed and showed an impact of cladribine treatment on intrinsic cellular firing patterns and spontaneous synaptic transmission in neurons of the primary auditory cortex. Here, cladribine administration in vivo partially restored cortical neuronal network function, reducing action potential firing. Both, the effect on immune cells and neuronal activity were transient. CONCLUSIONS: Our results indicate that cladribine exerts a neuroprotective effect after crossing the blood-brain barrier independently of its peripheral immunosuppressant action.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Encefalomielitis , Fármacos Neuroprotectores , Ratones , Animales , Encefalomielitis Autoinmune Experimental/patología , Cladribina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Inmunosupresores/uso terapéutico
4.
Cell Mol Life Sci ; 79(9): 479, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35951110

RESUMEN

Blood-brain barrier (BBB) integrity is necessary to maintain homeostasis of the central nervous system (CNS). NMDA receptor (NMDAR) function and expression have been implicated in BBB integrity. However, as evidenced in neuroinflammatory conditions, BBB disruption contributes to immune cell infiltration and propagation of inflammatory pathways. Currently, our understanding of the pathophysiological role of NMDAR signaling on endothelial cells remains incomplete. Thus, we investigated NMDAR function on primary mouse brain microvascular endothelial cells (MBMECs). We detected glycine-responsive NMDAR channels, composed of functional GluN1, GluN2A and GluN3A subunits. Importantly, application of glycine alone, but not glutamate, was sufficient to induce NMDAR-mediated currents and an increase in intracellular Ca2+ concentrations. Functionally, glycine-mediated NMDAR activation leads to loss of BBB integrity and changes in actin distribution. Treatment of oocytes that express NMDARs composed of different subunits, with GluN1 and GluN3A binding site inhibitors, resulted in abrogation of NMDAR signaling as measured by two-electrode voltage clamp (TEVC). This effect was only detected in the presence of the GluN2A subunits, suggesting the latter as prerequisite for pharmacological modulation of NMDARs on brain endothelial cells. Taken together, our findings argue for a novel role of glycine as NMDAR ligand on endothelial cells shaping BBB integrity.


Asunto(s)
Glicina , Receptores de N-Metil-D-Aspartato , Animales , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Glicina/metabolismo , Glicina/farmacología , Ratones , N-Metilaspartato/farmacología , Receptores de Glicina , Receptores de N-Metil-D-Aspartato/metabolismo
5.
J Neurosci Methods ; 367: 109443, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920025

RESUMEN

BACKGROUND: Myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (EAE) is the most commonly used animal model of multiple sclerosis. However, variations in the induction protocol can affect EAE progression, and may reduce the comparability of data. OPTIMIZED METHOD: In the present study, we investigated the influence of the different components used for EAE induction in C57BL/6J mice on disease progression. In the present study, MOG35-55-induced chronic EAE in C57BL/6J mice has been applied as a model to challenge optimal pertussis toxin (PTx) dosing, while considering variations in batch potency. RESULTS: We demonstrate that the dosage of PTx, adjusted to its potency, influences EAE development in a dose-dependent manner. Our data show that with our protocol, which considers PTx potency, C57BL/6J mice consistently develop symptoms of EAE. The mice show a typical chronic course with symptom onset after 10.5 ± 1.08 days and maximum severity around day 16 postimmunization followed by a mild remission of symptoms. COMPARISON WITH EXISTING METHODS: Previously studies reveal that alterations in PTx dosing directly modify EAE progression. Our present study highlights that PTx batches differ in potency, resulting in inconsistent EAE induction. We also provide a clear protocol that allows a reduction in the number of mice used in EAE experiments, while maintaining consistent results. CONCLUSION: Higher standards for comparability and reproducibility are needed to ensure and maximize the generation of reliable EAE data. Specifically, consideration of PTx potency. With our method of establishing consistent EAE pathogenesis, improved animal welfare standards and a reduction of mice used in experimentation can be achieved.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Animales , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidad , Fragmentos de Péptidos , Reproducibilidad de los Resultados
6.
Brain ; 144(10): 3126-3141, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34849598

RESUMEN

Dimethyl fumarate, an approved treatment for relapsing-remitting multiple sclerosis, exerts pleiotropic effects on immune cells as well as CNS resident cells. Here, we show that dimethyl fumarate exerts a profound alteration of the metabolic profile of human CD4+ as well as CD8+ T cells and restricts their antioxidative capacities by decreasing intracellular levels of the reactive oxygen species scavenger glutathione. This causes an increase in mitochondrial reactive oxygen species levels accompanied by an enhanced mitochondrial stress response, ultimately leading to impaired mitochondrial function. Enhanced mitochondrial reactive oxygen species levels not only result in enhanced T-cell apoptosis in vitro as well as in dimethyl fumarate-treated patients, but are key for the well-known immunomodulatory effects of dimethyl fumarate both in vitro and in an animal model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis. Indeed, dimethyl fumarate immune-modulatory effects on T cells were completely abrogated by pharmacological interference of mitochondrial reactive oxygen species production. These data shed new light on dimethyl fumarate as bona fide immune-metabolic drug that targets the intracellular stress response in activated T cells, thereby restricting mitochondrial function and energetic capacity, providing novel insight into the role of oxidative stress in modulating cellular immune responses and T cell-mediated autoimmunity.


Asunto(s)
Antioxidantes/farmacología , Autoinmunidad/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Dimetilfumarato/farmacología , Inmunosupresores/farmacología , Adulto , Animales , Antioxidantes/uso terapéutico , Autoinmunidad/fisiología , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Estudios de Cohortes , Dimetilfumarato/uso terapéutico , Femenino , Humanos , Inmunosupresores/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Adulto Joven
7.
Cells ; 10(3)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804060

RESUMEN

In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, the role of each central nervous system (CNS)-resident cell type during inflammation, neurodegeneration, and remission has been frequently addressed. Although protocols for the isolation of different individual CNS-resident cell types exist, none can harvest all of them within a single experiment. In addition, isolation of individual cells is more demanding in adult mice and even more so from the inflamed CNS. Here, we present a protocol for the simultaneous purification of viable single-cell suspensions of all principal CNS-resident cell types (microglia, oligodendrocytes, astrocytes, and neurons) from adult mice-applicable in healthy mice as well as in EAE. After dissociation of the brain and spinal cord from adult mice, microglia, oligodendrocytes, astrocytes and, neurons were isolated via magnetic-activated cell sorting (MACS). Validations comprised flow cytometry, immunocytochemistry, as well as functional analyses (immunoassay and Sholl analysis). The purity of each cell isolation averaged 90%. All cells displayed cell-type-specific morphologies and expressed specific surface markers. In conclusion, this new protocol for the simultaneous isolation of all major CNS-resident cell types from one CNS offers a sophisticated and comprehensive way to investigate complex cellular networks ex vivo and simultaneously reduce mice numbers to be sacrificed.


Asunto(s)
Encéfalo/citología , Separación Celular , Microglía/citología , Oligodendroglía/citología , Médula Espinal/citología , Animales , Encéfalo/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Inflamación/metabolismo , Ratones , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Oligodendroglía/metabolismo , Médula Espinal/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619082

RESUMEN

Encephalitis associated with antibodies against the neuronal gamma-aminobutyric acid A receptor (GABAA-R) is a rare form of autoimmune encephalitis. The pathogenesis is still unknown but autoimmune mechanisms were surmised. Here we identified a strongly expanded B cell clone in the cerebrospinal fluid of a patient with GABAA-R encephalitis. We expressed the antibody produced by it and showed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry that it recognizes the GABAA-R. Patch-clamp recordings revealed that it tones down inhibitory synaptic transmission and causes increased excitability of hippocampal CA1 pyramidal neurons. Thus, the antibody likely contributed to clinical disease symptoms. Hybridization to a protein array revealed the cross-reactive protein LIM-domain-only protein 5 (LMO5), which is related to cell-cycle regulation and tumor growth. We confirmed LMO5 recognition by immunoprecipitation and ELISA and showed that cerebrospinal fluid samples from two other patients with GABAA-R encephalitis also recognized LMO5. This suggests that cross-reactivity between GABAA-R and LMO5 is frequent in GABAA-R encephalitis and supports the hypothesis of a paraneoplastic etiology.


Asunto(s)
Antígenos de Neoplasias/inmunología , Autoanticuerpos/inmunología , Reacciones Cruzadas/inmunología , Susceptibilidad a Enfermedades , Encefalitis/etiología , Receptores de GABA-A/inmunología , Autoantígenos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/etiología , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Autoinmunidad , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Susceptibilidad a Enfermedades/inmunología , Encefalitis/metabolismo , Encefalitis/patología , Humanos , Células Piramidales/inmunología , Células Piramidales/metabolismo
9.
J Immunol Methods ; 487: 112875, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031794

RESUMEN

The expression of Kv1.3 and KCa channels in human T cells is essential for maintaining cell activation, proliferation and migration during an inflammatory response. Recently, an additional residual current, sensitive to anandamide and A293, compounds specifically inhibiting currents mediated by TASK channels, was observed after complete pharmacological blockade of Kv1.3 and KCa channels. This finding was not consistently observed throughout different studies and, an in-depth review of the different recording conditions used for the electrophysiological analysis of K+ currents in T cells revealed fluoride as major anionic component of the pipette intracellular solutions in the initial studies. While fluoride is frequently used to stabilize electrophysiological recordings, it is known as G-protein activator and to influence the intracellular Ca2+ concentration, which are mechanisms known to modulate TASK channel functioning. Therefore, we systemically addressed different fluoride- and chloride-based pipette solutions in whole-cell patch-clamp experiments in human T cells and used specific blockers to identify membrane currents carried by TASK and Kv1.3 channels. We found that fluoride increased the decay time constant of K+ outward currents, reduced the degree of the sustained current component and diminished the effect of the specific TASK channels blocker A293. These findings indicate that the use of fluoride-based pipette solutions may hinder the identification of a functional TASK channel component in electrophysiological experiments.


Asunto(s)
Fluoruros/farmacología , Potenciales de la Membrana/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Compuestos de Potasio/farmacología , Linfocitos T/efectos de los fármacos , Células Cultivadas , Fluoruros/metabolismo , Humanos , Canal de Potasio Kv1.3/efectos de los fármacos , Canal de Potasio Kv1.3/metabolismo , Cloruro de Magnesio/metabolismo , Cloruro de Magnesio/farmacología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/efectos de los fármacos , Compuestos de Potasio/metabolismo , Linfocitos T/metabolismo , Factores de Tiempo
10.
Stroke ; 50(11): 3238-3245, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31551038

RESUMEN

Background and Purpose- Ischemic stroke is one of the leading causes of disability and death. The principal goal of acute stroke treatment is the recanalization of the occluded cerebral arteries, which is, however, only effective in a very narrow time window. Therefore, neuroprotective treatments that can be combined with recanalization strategies are needed. Calcium overload is one of the major triggers of neuronal cell death. We have previously shown that capacitative Ca2+ entry, which is triggered by the depletion of intracellular calcium stores, contributes to ischemia-induced calcium influx in neurons, but the responsible Ca2+ channel is not known. Methods- Here, we have generated mice lacking the calcium channel subunit Orai2 and analyzed them in experimental stroke. Results- Orai2-deficient mice were protected from ischemic neuronal death both during acute ischemia under vessel occlusion and during ischemia/reperfusion upon successful recanalization. Calcium signals induced by calcium store depletion or oxygen/glucose deprivation were significantly diminished in Orai2-deficient neurons demonstrating that Orai2 is a central mediator of neuronal capacitative Ca2+ entry and is involved in calcium overload during ischemia. Conclusions- Our experimental data identify Orai2 as an attractive target for pharmaceutical intervention in acute stroke.


Asunto(s)
Isquemia Encefálica , Señalización del Calcio , Calcio/metabolismo , Neuroprotección , Proteína ORAI2/deficiencia , Accidente Cerebrovascular , Enfermedad Aguda , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Muerte Celular , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteína ORAI2/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control
11.
Neural Regen Res ; 14(11): 1950-1960, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31290453

RESUMEN

Autoimmune diseases of the central nervous system (CNS) like multiple sclerosis (MS) are characterized by inflammation and demyelinated lesions in white and grey matter regions. While inflammation is present at all stages of MS, it is more pronounced in the relapsing forms of the disease, whereas progressive MS (PMS) shows significant neuroaxonal damage and grey and white matter atrophy. Hence, disease-modifying treatments beneficial in patients with relapsing MS have limited success in PMS. BAF312 (siponimod) is a novel sphingosine-1-phosphate receptor modulator shown to delay progression in PMS. Besides reducing inflammation by sequestering lymphocytes in lymphoid tissues, BAF312 crosses the blood-brain barrier and binds its receptors on neurons, astrocytes and oligodendrocytes. To evaluate potential direct neuroprotective effects, BAF312 was systemically or locally administered in the CNS of experimental autoimmune encephalomyelitis mice with distinct grey- and white-matter lesions (focal experimental autoimmune encephalomyelitis using an osmotic mini-pump). Ex-vivo flow cytometry revealed that systemic but not local BAF312 administration lowered immune cell infiltration in animals with both grey and white matter lesions. Ex-vivo voltage-sensitive dye imaging of acute brain slices revealed an altered spatio-temporal pattern of activation in the lesioned cortex compared to controls in response to electrical stimulation of incoming white-matter fiber tracts. Here, BAF312 administration showed partial restore of cortical neuronal circuit function. The data suggest that BAF312 exerts a neuroprotective effect after crossing the blood-brain barrier independently of peripheral effects on immune cells. Experiments were carried out in accordance with German and EU animal protection law and approved by local authorities (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen; 87-51.04.2010.A331) on December 28, 2010.

12.
Proc Natl Acad Sci U S A ; 116(1): 271-276, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559188

RESUMEN

Blood-brain barrier (BBB) disruption and transendothelial trafficking of immune cells into the central nervous system (CNS) are pathophysiological hallmarks of neuroinflammatory disorders like multiple sclerosis (MS). Recent evidence suggests that the kallikrein-kinin and coagulation system might participate in this process. Here, we identify plasma kallikrein (KK) as a specific direct modulator of BBB integrity. Levels of plasma prekallikrein (PK), the precursor of KK, were markedly enhanced in active CNS lesions of MS patients. Deficiency or pharmacologic blockade of PK renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by a remarkable reduction of BBB disruption and CNS inflammation. In vitro analysis revealed that KK modulates endothelial cell function in a protease-activated receptor-2-dependent manner, leading to an up-regulation of the cellular adhesion molecules Intercellular Adhesion Molecule 1 and Vascular Cell Adhesion Molecule 1, thereby amplifying leukocyte trafficking. Our study demonstrates that PK is an important direct regulator of BBB integrity as a result of its protease function. Therefore, KK inhibition can decrease BBB damage and cell invasion during neuroinflammation and may offer a strategy for the treatment of MS.


Asunto(s)
Bradiquinina/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Calicreínas/metabolismo , Receptor PAR-2/metabolismo , Animales , Barrera Hematoencefálica , Western Blotting , Bradiquinina/fisiología , Encefalomielitis Autoinmune Experimental/fisiopatología , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Humanos , Calicreínas/antagonistas & inhibidores , Calicreínas/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/metabolismo , Receptor PAR-2/fisiología
13.
J Immunol Methods ; 461: 78-84, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30158076

RESUMEN

A network of ion currents influences basic cellular T cell functions. After T cell receptor activation, changes in highly regulated calcium levels play a central role in triggering effector functions and cell differentiation. A dysregulation of these processes might be involved in the pathogenesis of several diseases. We present a mathematical model based on the NEURON simulation environment that computes dynamic calcium levels in combination with the current output of diverse ion channels (KV1.3, KCa3.1, K2P channels (TASK1-3, TRESK), VRAC, TRPM7, CRAC). In line with experimental data, the simulation shows a strong increase in intracellular calcium after T cell receptor stimulation before reaching a new, elevated calcium plateau in the T cell's activated state. Deactivation of single ion channel modules, mimicking the application of channel blockers, reveals that two types of potassium channels are the main regulators of intracellular calcium level: calcium-dependent potassium (KCa3.1) and two-pore-domain potassium (K2P) channels.


Asunto(s)
Señalización del Calcio/inmunología , Fenómenos Electrofisiológicos/inmunología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/inmunología , Modelos Inmunológicos , Canales de Potasio de Dominio Poro en Tándem/inmunología , Linfocitos T/inmunología , Calcio/inmunología , Humanos , Linfocitos T/citología
14.
Exp Neurol ; 309: 54-66, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30048715

RESUMEN

Multiple sclerosis is characterized by intermingled episodes of de- and remyelination and the occurrence of white- and grey-matter damage. To mimic the randomly distributed pathophysiological brain lesions observed in MS, we assessed the impact of focal white and grey matter demyelination on thalamic function by directing targeted lysolecithin-induced lesions to the capsula interna (CI), the auditory cortex (A1), or the ventral medial geniculate nucleus (vMGN) in mice. Pathophysiological consequences were compared with those of cuprizone treatment at different stages of demyelination and remyelination. Combining single unit recordings and auditory stimulation in freely behaving mice revealed changes in auditory response profile and electrical activity pattern in the thalamus, depending on the region of the initial insult and the state of remyelination. Cuprizone-induced general demyelination significantly diminished vMGN neuronal activity and frequency-specific responses. Targeted lysolecithin-induced lesions directed either to A1 or to vMGN revealed a permanent impairment of frequency-specific responses, an increase in latency of auditory responses and a reduction in occurrence of burst firing in vMGN neurons. These findings indicate that demyelination of grey matter areas in the thalamocortical system permanently affects vMGN frequency specificity and the prevalence of bursting in the auditory thalamus.


Asunto(s)
Potenciales de Acción/fisiología , Enfermedades Desmielinizantes/patología , Tálamo/fisiopatología , Estimulación Acústica/métodos , Potenciales de Acción/efectos de los fármacos , Animales , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/fisiopatología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Femenino , Lateralidad Funcional , Cuerpos Geniculados/patología , Gliosis/inducido químicamente , Gliosis/patología , Sustancia Gris/patología , Lisofosfatidilcolinas/farmacología , Ratones , Ratones Endogámicos C57BL , Inhibidores de la Monoaminooxidasa/toxicidad , Proteína Proteolipídica de la Mielina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Psicoacústica , Tálamo/efectos de los fármacos
15.
Brain Struct Funct ; 223(7): 3091-3106, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29744572

RESUMEN

Alterations in cortical cellular organization, network functionality, as well as cognitive and locomotor deficits were recently suggested to be pathological hallmarks in multiple sclerosis and corresponding animal models as they might occur following demyelination. To investigate functional changes following demyelination in a well-defined, topographically organized neuronal network, in vitro and in vivo, we focused on the primary auditory cortex (A1) of mice in the cuprizone model of general de- and remyelination. Following myelin loss in this model system, the spatiotemporal propagation of incoming stimuli in A1 was altered and the hierarchical activation of supra- and infragranular cortical layers was lost suggesting a profound effect exerted on neuronal network level. In addition, the response latency in field potential recordings and voltage-sensitive dye imaging was increased following demyelination. These alterations were accompanied by a loss of auditory discrimination abilities in freely behaving animals, a reduction of the nuclear factor-erythroid 2-related factor-2 (Nrf-2) protein in the nucleus in histological staining and persisted during remyelination. To find new strategies to restore demyelination-induced network alteration in addition to the ongoing remyelination, we tested the cytoprotective potential of dimethyl fumarate (DMF). Therapeutic treatment with DMF during remyelination significantly modified spatiotemporal stimulus propagation in the cortex, reduced the cognitive impairment, and prevented the demyelination-induced decrease in nuclear Nrf-2. These results indicate the involvement of anti-oxidative mechanisms in regulating spatiotemporal cortical response pattern following changes in myelination and point to DMF as therapeutic compound for intervention.


Asunto(s)
Corteza Auditiva/patología , Dimetilfumarato/uso terapéutico , Inmunosupresores/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Remielinización/efectos de los fármacos , Animales , Ansiedad , Corteza Auditiva/diagnóstico por imagen , Escala de Evaluación de la Conducta , Cuprizona/farmacología , Dimetilfumarato/administración & dosificación , Modelos Animales de Enfermedad , Estimulación Eléctrica , Inmunosupresores/administración & dosificación , Locomoción/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Imagen de Colorante Sensible al Voltaje
16.
Proc Natl Acad Sci U S A ; 114(46): 12315-12320, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087944

RESUMEN

Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/enzimología , Isquemia Miocárdica/enzimología , NADPH Oxidasa 4/genética , Animales , Benzoxazoles/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Inhibidores Enzimáticos/farmacología , Femenino , Arteria Femoral/lesiones , Regulación de la Expresión Génica , Miembro Posterior/irrigación sanguínea , Miembro Posterior/efectos de los fármacos , Miembro Posterior/metabolismo , Miembro Posterior/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Isquemia Miocárdica/prevención & control , NADPH Oxidasa 4/antagonistas & inhibidores , NADPH Oxidasa 4/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Especificidad de Órganos , Pirazoles/farmacología , Piridonas/farmacología , Ratas , Transducción de Señal , Triazoles/farmacología
17.
J Neuroimmunol ; 313: 125-128, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28992973

RESUMEN

Recent studies have implicated an important role for coagulation factors in neuroinflammatory disorders like multiple sclerosis (MS). Here, we investigate the role of factor X (FX) in neuroinflammation by using rivaroxaban the selective inhibitor of activated FX (FXa) in experimental autoimmune encephalomyelitis (EAE, an animal model of MS). Rivaroxaban-treated rats were less susceptible to EAE compared to the untreated control group. This finding was accompanied by reduced T-cell infiltration and microglia activation. Our study identifies FX as a possible target in neuroinflammatory diseases. As FXa inhibitors are approved for other disorders, FXa blockade could serve as a fast available medication.


Asunto(s)
Inhibidores del Factor Xa/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Rivaroxabán/uso terapéutico , Análisis de Varianza , Animales , Antígenos CD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Femenino , Factores de Transcripción Forkhead/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Ganglios Linfáticos/patología , Proteínas de Microfilamentos/metabolismo , Esclerosis Múltiple/patología , Ratas , Ratas Endogámicas Lew , Médula Espinal/efectos de los fármacos , Médula Espinal/patología
18.
Int J Mol Sci ; 18(9)2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28885567

RESUMEN

Acquired epilepsies can arise as a consequence of brain injury and result in unprovoked seizures that emerge after a latent period of epileptogenesis. These epilepsies pose a major challenge to clinicians as they are present in the majority of patients seen in a common outpatient epilepsy clinic and are prone to pharmacoresistance, highlighting an unmet need for new treatment strategies. Metabolic and homeostatic changes are closely linked to seizures and epilepsy, although, surprisingly, no potential treatment targets to date have been translated into clinical practice. We summarize here the current knowledge about metabolic and homeostatic changes in seizures and acquired epilepsy, maintaining a particular focus on mitochondria, calcium dynamics, reactive oxygen species and key regulators of cellular metabolism such as the Nrf2 pathway. Finally, we highlight research gaps that will need to be addressed in the future which may help to translate these findings into clinical practice.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético , Epilepsia/metabolismo , Homeostasis , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Convulsiones/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Canales de Calcio/metabolismo , Muerte Celular , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Epilepsia/etiología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Investigación , Convulsiones/etiología
19.
Brain Behav Immun ; 59: 103-117, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27569659

RESUMEN

Myelin loss is a severe pathological hallmark common to a number of neurodegenerative diseases, including multiple sclerosis (MS). Demyelination in the central nervous system appears in the form of lesions affecting both white and gray matter structures. The functional consequences of demyelination on neuronal network and brain function are not well understood. Current therapeutic strategies for ameliorating the course of such diseases usually focus on promoting remyelination, but the effectiveness of these approaches strongly depends on the timing in relation to the disease state. In this study, we sought to characterize the time course of sensory and behavioral alterations induced by de- and remyelination to establish a rational for the use of remyelination strategies. By taking advantage of animal models of general and focal demyelination, we tested the consequences of myelin loss on the functionality of the auditory thalamocortical system: a well-studied neuronal network consisting of both white and gray matter regions. We found that general demyelination was associated with a permanent loss of the tonotopic cortical organization in vivo, and the inability to induce tone-frequency-dependent conditioned behaviors, a status persisting after remyelination. Targeted, focal lysolecithin-induced lesions in the white matter fiber tract, but not in the gray matter regions of cortex, were fully reversible at the morphological, functional and behavioral level. These findings indicate that remyelination of white and gray matter lesions have a different functional regeneration potential, with the white matter being able to regain full functionality while cortical gray matter lesions suffer from permanently altered network function. Therefore therapeutic interventions aiming for remyelination have to consider both region- and time-dependent strategies.


Asunto(s)
Corteza Cerebral/fisiopatología , Enfermedades Desmielinizantes/fisiopatología , Red Nerviosa/fisiopatología , Inmunidad Adaptativa , Animales , Conducta Animal , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/psicología , Electrodos Implantados , Sustancia Gris/patología , Lisofosfatidilcolinas , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/patología , Recuperación de la Función , Sensación , Sustancia Blanca/patología
20.
Sci Transl Med ; 8(362): 362ra146, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27797962

RESUMEN

In inflammation-associated progressive neuroinflammatory disorders, such as multiple sclerosis (MS), inflammatory infiltrates containing T helper 1 (TH1) and TH17 cells cause demyelination and neuronal degeneration. Regulatory T cells (Treg) control the activation and infiltration of autoreactive T cells into the central nervous system (CNS). In MS and experimental autoimmune encephalomyelitis (EAE) in mice, Treg function is impaired. We show that a recently approved drug, Nle4-d-Phe7-α-melanocyte-stimulating hormone (NDP-MSH), induced functional Treg, resulting in amelioration of EAE progression in mice. NDP-MSH also prevented immune cell infiltration into the CNS by restoring the integrity of the blood-brain barrier. NDP-MSH exerted long-lasting neuroprotective effects in mice with EAE and prevented excitotoxic death and reestablished action potential firing in mouse and human neurons in vitro. Neuroprotection by NDP-MSH was mediated via signaling through the melanocortin-1 and orphan nuclear 4 receptors in mouse and human neurons. NDP-MSH may be of benefit in treating neuroinflammatory diseases such as relapsing-remitting MS and related disorders.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Receptor de Melanocortina Tipo 1/metabolismo , alfa-MSH/análogos & derivados , Potenciales de Acción , Animales , Barrera Hematoencefálica , Células de la Médula Ósea/metabolismo , Proliferación Celular , Sistema Nervioso Central/inmunología , Progresión de la Enfermedad , Citometría de Flujo , Perfilación de la Expresión Génica , Ácido Glutámico/química , Hipocampo/metabolismo , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Unión Proteica , Receptor de Melanocortina Tipo 1/genética , Linfocitos T Reguladores/citología , alfa-MSH/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...