Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sci Adv ; 10(31): eaax2323, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093972

RESUMEN

The nucleocapsid protein of severe acute respiratory syndrome coronavirus 2 encapsidates the viral genome and is essential for viral function. The central disordered domain comprises a serine-arginine-rich (SR) region that is hyperphosphorylated in infected cells. This modification regulates function, although mechanistic details remain unknown. We use nuclear magnetic resonance to follow structural changes occurring during hyperphosphorylation by serine arginine protein kinase 1, glycogen synthase kinase 3, and casein kinase 1, that abolishes interaction with RNA. When eight approximately uniformly distributed sites have been phosphorylated, the SR domain binds the same interface as single-stranded RNA, resulting in complete inhibition of RNA binding. Phosphorylation by protein kinase A does not prevent RNA binding, indicating that the pattern resulting from physiologically relevant kinases is specific for inhibition. Long-range contacts between the RNA binding, linker, and dimerization domains are abrogated, phenomena possibly related to genome packaging and unpackaging. This study provides insight into the recruitment of specific host kinases to regulate viral function.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus , Unión Proteica , ARN Viral , SARS-CoV-2 , Fosforilación , SARS-CoV-2/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Humanos , ARN Viral/metabolismo , ARN Viral/química , Conformación Proteica , COVID-19/virología , COVID-19/metabolismo , Proteínas de la Nucleocápside/metabolismo , Proteínas de la Nucleocápside/química , Modelos Moleculares , Sitios de Unión , Fosfoproteínas
2.
Proc Natl Acad Sci U S A ; 117(34): 20576-20585, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32788352

RESUMEN

Temperate bacteriophages can enter one of two life cycles following infection of a sensitive host: the lysogenic or the lytic life cycle. The choice between the two alternative life cycles is dependent upon a tight regulation of promoters and their cognate regulatory proteins within the phage genome. We investigated the genetic switch of TP901-1, a bacteriophage of Lactococcus lactis, controlled by the CI repressor and the modulator of repression (MOR) antirepressor and their interactions with DNA. We determined the solution structure of MOR, and we solved the crystal structure of MOR in complex with the N-terminal domain of CI, revealing the structural basis of MOR inhibition of CI binding to the DNA operator sites. 15N NMR Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion and rotating frame R1ρ measurements demonstrate that MOR displays molecular recognition dynamics on two different time scales involving a repacking of aromatic residues at the interface with CI. Mutations in the CI:MOR binding interface impair complex formation in vitro, and when introduced in vivo, the bacteriophage switch is unable to choose the lytic life cycle showing that the CI:MOR complex is essential for proper functioning of the genetic switch. On the basis of sequence alignments, we show that the structural features of the MOR:CI complex are likely conserved among a larger family of bacteriophages from human pathogens implicated in transfer of antibiotic resistance.


Asunto(s)
Bacteriófagos/fisiología , Lisogenia , Proteínas Represoras/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Genoma Bacteriano , Interacciones Huésped-Patógeno , Cinética , Lactococcus lactis/virología , Simulación de Dinámica Molecular , Regiones Operadoras Genéticas , Conformación Proteica , Proteínas Represoras/química , Proteínas Reguladoras y Accesorias Virales/química
4.
J Struct Biol ; 209(3): 107434, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846718

RESUMEN

In bacteria, nucleoid associated proteins (NAPs) take part in active chromosome organization by supercoil management, three-dimensional DNA looping and direct transcriptional control. Mycobacterial integration host factor (mIHF, rv1388) is a NAP restricted to Actinobacteria and essential for survival of the human pathogen Mycobacterium tuberculosis. We show in vitro that DNA binding by mIHF strongly stabilizes the protein and increases its melting temperature. The structure obtained by Nuclear Magnetic Resonance (NMR) spectroscopy characterizes mIHF as a globular protein with a protruding alpha helix and a disordered N-terminus, similar to Streptomyces coelicolor IHF (sIHF). NMR revealed no residues of high flexibility, suggesting that mIHF is a rigid protein overall that does not undergo structural rearrangements. We show that mIHF only binds to double stranded DNA in solution, through two DNA binding sites (DBSs) similar to those identified in the X-ray structure of sIHF. According to Atomic Force Microscopy, mIHF is able to introduce left-handed loops of ca. 100 nm size (~300 bp) in supercoiled cosmids, thereby unwinding and relaxing the DNA.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , Factores de Integración del Huésped/ultraestructura , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Sitios de Unión/genética , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Interacciones Huésped-Patógeno/genética , Humanos , Factores de Integración del Huésped/genética , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Mycobacterium tuberculosis/patogenicidad , Conformación Proteica en Hélice alfa/genética , Streptomyces coelicolor/genética , Tuberculosis/genética
5.
Dev Cell ; 50(4): 494-508.e11, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430451

RESUMEN

Clathrin-mediated endocytosis (CME) is key to maintaining the transmembrane protein composition of cells' limiting membranes. During mammalian CME, a reversible phosphorylation event occurs on Thr156 of the µ2 subunit of the main endocytic clathrin adaptor, AP2. We show that this phosphorylation event starts during clathrin-coated pit (CCP) initiation and increases throughout CCP lifetime. µ2Thr156 phosphorylation favors a new, cargo-bound conformation of AP2 and simultaneously creates a binding platform for the endocytic NECAP proteins but without significantly altering AP2's cargo affinity in vitro. We describe the structural bases of both. NECAP arrival at CCPs parallels that of clathrin and increases with µ2Thr156 phosphorylation. In turn, NECAP recruits drivers of late stages of CCP formation, including SNX9, via a site distinct from where NECAP binds AP2. Disruption of the different modules of this phosphorylation-based temporal regulatory system results in CCP maturation being delayed and/or stalled, hence impairing global rates of CME.


Asunto(s)
Complejo 2 de Proteína Adaptadora/genética , Subunidades alfa de Complejo de Proteína Adaptadora/genética , Endocitosis/genética , Nexinas de Clasificación/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Clatrina/genética , Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/genética , Vesículas Cubiertas por Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/genética , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Humanos , Fosforilación/genética , Unión Proteica/genética
6.
Chem Sci ; 9(47): 8850-8859, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30627403

RESUMEN

Teixobactin is a new promising antibiotic that targets cell wall biosynthesis by binding to lipid II and has no detectable resistance thanks to its unique but yet not fully understood mechanism of operation. To aid in the structure-based design of teixobactin analogues with improved pharmacological properties, we present a 3D structure of native teixobactin in membrane mimetics and characterise its binding to lipid II through a combination of solution NMR and fast (90 kHz) magic angle spinning solid state NMR. In NMR titrations, we observe a pattern strongly suggesting interactions between the backbone of the C-terminal "cage" and the pyrophosphate moiety in lipid II. We find that the N-terminal part of teixobactin does not only act as a membrane anchor, as previously thought, but is actively involved in binding. Moreover, teixobactin forms a well-structured and specific complex with lipid II, where the N-terminal part of teixobactin assumes a ß conformation that is highly prone to aggregation, which likely contributes to the antibiotic's high bactericidal efficiency. Overall, our study provides several new clues to teixobactin's modes of action.

7.
J Mol Biol ; 429(15): 2373-2386, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28647409

RESUMEN

Arkadia (Rnf111) is an E3 ubiquitin ligase that plays a central role in the amplification of transforming growth factor beta (TGF-ß) signaling responses by targeting for degradation the negative regulators of the pathway, Smad6 and Smad7, and the nuclear co-repressors Ski and Skil (SnoN). Arkadia's function in vivo depends on the really interesting new gene (RING)-H2 interaction with the E2 enzyme UbcH5b in order to ligate ubiquitin chains on its substrates. A conserved tryptophan (W972) in the C-terminal α-helix is widely accepted as essential for E2 recruitment and interaction and thus also for E3 enzymatic activity. The present NMR-driven study provides an atomic-level investigation of the structural and dynamical properties of two W972 Arkadia RING mutants, attempting to illuminate for the first time the differences between a functional and a nonfunctional mutant W972A and W972R, respectively. A TGF-ß-responsive promoter driving luciferase was used to assay for Arkadia function in vivo. These experiments showed that the Arkadia W972A mutant has the same activity as wild-type (WT) Arkadia in enhancing TGF-ß signaling responses, while W972R does not. Only minor structural differences exist between the W972A RING domain and WT-RING. In contrast, the W972R mutant hardly interacts with E2. The loss of function correlates with structural changes in the C-terminal α-helix and an increase in the distance between the Zn(II) ions. Our data show that the position occupied by W972 within WT Arkadia is critical for the function of RING and that it depends on the nature of the residue at this position.


Asunto(s)
Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Alanina/genética , Alanina/metabolismo , Sustitución de Aminoácidos , Arginina/genética , Arginina/metabolismo , Genes Reporteros , Luciferasas/análisis , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/genética , Proteínas Nucleares/genética , Conformación Proteica , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Triptófano/genética , Triptófano/metabolismo , Ubiquitina-Proteína Ligasas/genética
8.
Proc Natl Acad Sci U S A ; 113(33): 9187-92, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27489348

RESUMEN

Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Pliegue de Proteína , Protones
9.
J Biomol NMR ; 64(1): 27-37, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26614488

RESUMEN

Nuclear magnetic resonance spectroscopy (NMR) can provide a great deal of information about structure and dynamics of biomolecules. The quality of an NMR structure strongly depends on the number of experimental observables and on their accurate conversion into geometric restraints. When distance restraints are derived from nuclear Overhauser effect spectroscopy (NOESY), stereo-specific assignments of prochiral atoms can contribute significantly to the accuracy of NMR structures of proteins and nucleic acids. Here we introduce a series of NOESY-based pulse sequences that can assist in the assignment of chiral CHD methylene protons in random fractionally deuterated proteins. Partial deuteration suppresses spin-diffusion between the two protons of CH2 groups that normally impedes the distinction of cross-relaxation networks for these two protons in NOESY spectra. Three and four-dimensional spectra allow one to distinguish cross-relaxation pathways involving either of the two methylene protons so that one can obtain stereospecific assignments. In addition, the analysis provides a large number of stereospecific distance restraints. Non-uniform sampling was used to ensure optimal signal resolution in 4D spectra and reduce ambiguities of the assignments. Automatic assignment procedures were modified for efficient and accurate stereospecific assignments during automated structure calculations based on 3D spectra. The protocol was applied to calcium-loaded calbindin D9k. A large number of stereospecific assignments lead to a significant improvement of the accuracy of the structure.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Modelos Moleculares , Conformación Molecular , Proteína G de Unión al Calcio S100/química
10.
J Biol Chem ; 290(33): 20527-40, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26149686

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is a promising therapeutic agent for Parkinson disease. As such, there has been great interest in studying its mode of action, which remains unknown. The three-dimensional crystal structure of the N terminus (residues 9-107) of CDNF has been determined, but there have been no published structural studies on the full-length protein due to proteolysis of its C-terminal domain, which is considered intrinsically disordered. An improved purification protocol enabled us to obtain active full-length CDNF and to determine its three-dimensional structure in solution. CDNF contains two well folded domains (residues 10-100 and 111-157) that are linked by a loop of intermediate flexibility. We identified two surface patches on the N-terminal domain that were characterized by increased conformational dynamics that should allow them to embrace active sites. One of these patches is formed by residues Ser-33, Leu-34, Ala-66, Lys-68, Ile-69, Leu-70, Ser-71, and Glu-72. The other includes a flexibly disordered N-terminal tail (residues 1-9), followed by the N-terminal portion of α-helix 1 (residues Cys-11, Glu-12, Val-13, Lys-15, and Glu-16) and residue Glu-88. The surface of the C-terminal domain contains two conserved active sites, which have previously been identified in mesencephalic astrocyte-derived neurotrophic factor, a CDNF paralog, which corresponds to its intracellular mode of action. We also showed that CDNF was able to protect dopaminergic neurons against injury caused by α-synuclein oligomers. This advises its use against physiological damages caused by α-synuclein oligomers, as observed in Parkinson disease and several other neurodegenerative diseases.


Asunto(s)
Biopolímeros/metabolismo , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/fisiología , Fármacos Neuroprotectores , alfa-Sinucleína/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Ratones , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Relación Estructura-Actividad
12.
J Biomol NMR ; 62(3): 253-61, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26078089

RESUMEN

Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Protones
13.
J Biomol NMR ; 62(4): 473-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25917899

RESUMEN

UNIO is a comprehensive software suite for protein NMR structure determination that enables full automation of all NMR data analysis steps involved--including signal identification in NMR spectra, sequence-specific backbone and side-chain resonance assignment, NOE assignment and structure calculation. Within the framework of the second round of the community-wide stringent blind NMR structure determination challenge (CASD-NMR 2), we participated in two categories of CASD-NMR 2, namely using either raw NMR spectra or unrefined NOE peak lists as input. A total of 15 resulting NMR structure bundles were submitted for 9 out of 10 blind protein targets. All submitted UNIO structures accurately coincided with the corresponding blind targets as documented by an average backbone root mean-square deviation to the reference proteins of only 1.2 Å. Also, the precision of the UNIO structure bundles was virtually identical to the ensemble of reference structures. By assessing the quality of all UNIO structures submitted to the two categories, we find throughout that only the UNIO-ATNOS/CANDID approach using raw NMR spectra consistently yielded structure bundles of high quality for direct deposition in the Protein Data Bank. In conclusion, the results obtained in CASD-NMR 2 are another vital proof for robust, accurate and unsupervised NMR data analysis by UNIO for real-world applications.


Asunto(s)
Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas/química , Programas Informáticos , Resonancia Magnética Nuclear Biomolecular/métodos
14.
J Biomol NMR ; 61(1): 47-53, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25428764

RESUMEN

A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [(1)H,(1)H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Programas Informáticos , Estructura Terciaria de Proteína
15.
J Am Chem Soc ; 136(35): 12489-97, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25102442

RESUMEN

Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.


Asunto(s)
Hidrógeno/análisis , Resonancia Magnética Nuclear Biomolecular/métodos , Protones , Isótopos de Carbono/análisis , Medición de Intercambio de Deuterio , Modelos Moleculares , Isótopos de Nitrógeno/análisis , Proteínas/química
16.
Structure ; 21(9): 1563-70, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24010715

RESUMEN

As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment.


Asunto(s)
Bases de Datos de Proteínas/normas , Comités Consultivos , Guías como Asunto , Bases del Conocimiento , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteínas/química , Control de Calidad , Estándares de Referencia , Estudios de Validación como Asunto
17.
Nat Chem Biol ; 8(10): 855-61, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22941047

RESUMEN

Among bacterial toxin-antitoxin systems, to date no antitoxin has been identified that functions by cleaving toxin mRNA. Here we show that YjdO (renamed GhoT) is a membrane lytic peptide that causes ghost cell formation (lysed cells with damaged membranes) and increases persistence (persister cells are tolerant to antibiotics without undergoing genetic change). GhoT is part of a new toxin-antitoxin system with YjdK (renamed GhoS) because in vitro RNA degradation studies, quantitative real-time reverse-transcription PCR and whole-transcriptome studies revealed that GhoS masks GhoT toxicity by cleaving specifically yjdO (ghoT) mRNA. Alanine substitutions showed that Arg28 is important for GhoS activity, and RNA sequencing indicated that the GhoS cleavage site is rich in U and A. The NMR structure of GhoS indicates it is related to the CRISPR-associated-2 RNase, and GhoS is a monomer. Hence, GhoT-GhoS is to our knowledge the first type V toxin-antitoxin system where a protein antitoxin inhibits the toxin by cleaving specifically its mRNA.


Asunto(s)
Antitoxinas/genética , Toxinas Bacterianas/genética , ARN Mensajero/genética , Antitoxinas/química , Antitoxinas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Biopelículas , Hidrólisis , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
J Am Chem Soc ; 134(36): 14730-3, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22916960

RESUMEN

Pseudocontact shifts (PCSs) arise in paramagnetic systems in which the susceptibility tensor is anisotropic. PCSs depend upon the distance from the paramagnetic center and the position relative to the susceptibility tensor, and they can be used as structural restraints in protein structure determination. We show that the use of (1)H-detected solid-state correlations provides facile and rapid detection and assignment of site-specific PCSs, including resolved (1)H PCSs, in a large metalloprotein, Co(2+)-substituted superoxide dismutase (Co(2+)-SOD). With only 3 mg of sample and a small set of experiments, several hundred PCSs were measured and assigned, and these PCSs were subsequently used in combination with (1)H-(1)H distance and dihedral angle restraints to determine the protein backbone geometry with a precision paralleling those of state-of-the-art liquid-state determinations of diamagnetic proteins, including a well-defined active site.


Asunto(s)
Cobalto/química , Espectroscopía de Resonancia Magnética/normas , Metaloproteínas/química , Protones , Superóxido Dismutasa/química , Modelos Moleculares , Estándares de Referencia , Superóxido Dismutasa/metabolismo
19.
J Biomol NMR ; 53(4): 341-54, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22752932

RESUMEN

The J-UNIO (JCSG protocol using the software UNIO) procedure for automated protein structure determination by NMR in solution is introduced. In the present implementation, J-UNIO makes use of APSY-NMR spectroscopy, 3D heteronuclear-resolved [(1)H,(1)H]-NOESY experiments, and the software UNIO. Applications with proteins from the JCSG target list with sizes up to 150 residues showed that the procedure is highly robust and efficient. In all instances the correct polypeptide fold was obtained in the first round of automated data analysis and structure calculation. After interactive validation of the data obtained from the automated routine, the quality of the final structures was comparable to results from interactive structure determination. Special advantages are that the NMR data have been recorded with 6-10 days of instrument time per protein, that there is only a single step of chemical shift adjustments to relate the backbone signals in the APSY-NMR spectra with the corresponding backbone signals in the NOESY spectra, and that the NOE-based amino acid side chain chemical shift assignments are automatically focused on those residues that are heavily weighted in the structure calculation. The individual working steps of J-UNIO are illustrated with the structure determination of the protein YP_926445.1 from Shewanella amazonensis, and the results obtained with 17 JCSG targets are critically evaluated.


Asunto(s)
Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Shewanella/química , Soluciones
20.
Proc Natl Acad Sci U S A ; 109(28): 11095-100, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22723345

RESUMEN

We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.


Asunto(s)
Carbono/química , Espectroscopía de Resonancia Magnética/métodos , Metaloproteínas/química , Nitrógeno/química , Catálisis , Dominio Catalítico , Cobre/química , Cristalización , Hidrógeno/química , Modelos Moleculares , Conformación Molecular , Distribución Normal , Resonancia Magnética Nuclear Biomolecular/métodos , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA