Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 138(2): 635-40, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26651534

RESUMEN

Today, most metal and nitrogen doped carbon catalysts for ORR reveal a heterogeneous composition. This can be reasoned by a nonoptimized precursor composition and various steps in the preparation process to get the required active material. The significant presence of inorganic metal species interferes with the assignment of descriptors related to the ORR activity and stability. In this work we present a simple and feasible way to reduce the contribution of inorganic metal species in some cases even down to zero. Such catalysts reveal the desired homogeneous composition of MeN4 (Me = metal) sites in the carbon that is accompanied by a significant enhancement in ORR activity. Among the work of other international groups, our iron-based catalyst comprises the highest density of FeN4 sites ever reported without interference of inorganic metal sites.

2.
Nanomaterials (Basel) ; 4(3): 583-598, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-28344237

RESUMEN

We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of ex situ X-Ray Powder Diffraction (XRPD) measurements, N2 physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl4 and Ti(OBu)4, and a more classic route with Ti(OiPr)4 and HCl. For both precursors, different specimens were prepared by resorting to different calcination rates and with and without the addition of acetylacetone, that creates coordinated species with lower hydrolysis rates, and with different calcination rates. Each sample was employed as photoanode and tested in the water splitting reaction by recording I-V curves and comparing the results with commercial P25 powders. The complex data framework suggests that a narrow pore size distribution, due to the use of acetylacetone, plays a major role in the photoactivity, leading to a current density value higher than that of P25.

3.
Phys Chem Chem Phys ; 15(5): 1389-98, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23247669

RESUMEN

α-Fe(2)O(3) (hematite) photoanodes for the oxygen evolution reaction (OER) were prepared by a cost-efficient sol-gel procedure. Due to low active photoelectrochemical properties observed, it is assumed that the sol-gel procedure leads to hematite films with defects and surface states on which generated charge carriers are recombined or immobilized in trap processes. Electrochemical activation was proven to diminish unfavourable surface groups to some extent. More efficiently, a plasma treatment improves significantly the photoelectrochemical properties of the OER. X-ray photoelectron spectroscopy (XPS) analysis reveals an oxygen enriched surface layer with new oxygen species which may be responsible for the improved electrochemical activity. Due to surface photovoltage an increased fraction of transferred charge carriers from these newly produced surface defects are identified.


Asunto(s)
Compuestos Férricos/química , Geles/química , Luz , Agua/química , Técnicas Electroquímicas , Oxidación-Reducción , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...