Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(12): 1899-1901, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38901400

RESUMEN

The dynamic suppression of threat-related behavior as a function of environmental constraint is critical for survival in mammals, yet the neurobiological underpinnings remain largely unknown. In this issue of Neuron, Wang et al.1 identified prefrontal dynorphin-expressing neurons as key elements for tracking threat-related behavioral states and regulating fear suppression.


Asunto(s)
Dinorfinas , Miedo , Neuronas , Corteza Prefrontal , Dinorfinas/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Neuronas/metabolismo , Animales , Miedo/fisiología
2.
Sci Rep ; 14(1): 5022, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424161

RESUMEN

The dentate gyrus (DG) of the hippocampus is a mosaic of dentate granule neurons (DGNs) accumulated throughout life. While many studies focused on the morpho-functional properties of adult-born DGNs, much less is known about DGNs generated during development, and in particular those born during embryogenesis. One of the main reasons for this gap is the lack of methods available to specifically label and manipulate embryonically-born DGNs. Here, we have assessed the relevance of the PenkCre mouse line as a genetic model to target this embryonically-born population. In young animals, PenkCre expression allows to tag neurons in the DG with positional, morphological and electrophysiological properties characteristic of DGNs born during the embryonic period. In addition, PenkCre+ cells in the DG are distributed in both blades along the entire septo-temporal axis. This model thus offers new possibilities to explore the functions of this underexplored population of embryonically-born DGNs.


Asunto(s)
Giro Dentado , Neuronas , Animales , Ratones , Giro Dentado/fisiología , Neuronas/fisiología , Hipocampo , Neurogénesis/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-37858736

RESUMEN

The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.


Asunto(s)
Dopamina , Síndrome de Wolfram , Animales , Femenino , Masculino , Reacción de Prevención , Neuronas/fisiología , Receptores de Dopamina D1 , Receptores de Dopamina D2/genética
4.
Nat Commun ; 14(1): 8312, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097535

RESUMEN

The consolidation of recent memories depends on memory replays, also called ripples, generated within the hippocampus during slow-wave sleep, and whose inactivation leads to memory impairment. For now, the mobilisation, localisation and importance of synaptic plasticity events associated to ripples are largely unknown. To tackle this question, we used cell surface AMPAR immobilisation to block post-synaptic LTP within the hippocampal region of male mice during a spatial memory task, and show that: 1- hippocampal synaptic plasticity is engaged during consolidation, but is dispensable during encoding or retrieval. 2- Plasticity blockade during sleep results in apparent forgetting of the encoded rule. 3- In vivo ripple recordings show a strong effect of AMPAR immobilisation when a rule has been recently encoded. 4- In situ investigation suggests that plasticity at CA3-CA3 recurrent synapses supports ripple generation. We thus propose that post-synaptic AMPAR mobility at CA3 recurrent synapses is necessary for ripple-dependent rule consolidation.


Asunto(s)
Consolidación de la Memoria , Ratones , Masculino , Animales , Consolidación de la Memoria/fisiología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Sueño/fisiología , Memoria Espacial , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología
5.
C R Biol ; 346: 127-138, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38116876

RESUMEN

The medial prefrontal cortex (mPFC) is at the core of numerous psychiatric conditions, including fear and anxiety-related disorders. Whereas an abundance of evidence suggests a crucial role of the mPFC in regulating fear behaviour, the precise role of the mPFC in this process is not yet entirely clear. While studies at the single-cell level have demonstrated the involvement of this area in various aspects of fear processing, such as the encoding of threat-related cues and fear expression, an increasingly prevalent idea in the systems neuroscience field is that populations of neurons are, in fact, the essential unit of computation in many integrative brain regions such as prefrontal areas. What mPFC neuronal populations represent when we face threats? To address this question, we performed electrophysiological single-unit population recordings in the dorsal mPFC while mice faced threat-predicting cues eliciting defensive behaviours, and performed pharmacological and optogenetic inactivations of this area and the amygdala. Our data indicated that the presence of threat-predicting cues induces a stable coding dynamics of internally driven representations in the dorsal mPFC, necessary to drive learned defensive behaviours. Moreover, these neural population representations primary reflect learned associations rather than specific defensive behaviours, and the construct of such representations relies on the functional integrity of the amygdala.


Le cortex préfrontal médial (CPFm) est au cœur de nombreuses affections psychiatriques, notamment les troubles liés à la peur et à l'anxiété. Alors que de nombreuses preuves suggèrent un rôle crucial du CPFm dans la régulation du comportement de peur, le rôle précis du CPFm dans ce processus n'est pas encore tout à fait clair. En effet, si des études au niveau de la cellule unique ont démontré l'implication de cette zone dans divers aspects du traitement de la peur, tels que l'encodage des indices liés à la menace et l'expression de la peur, l'idée selon laquelle des populations de neurones constituent en fait l'unité de calcul essentielle dans de nombreuses régions cérébrales intégratives, telles que les zones préfrontales, est de plus en plus répandue dans le domaine des neurosciences systémiques. Que représentent les populations de neurones du mPFC lorsque nous sommes confrontés à des menaces  ? Pour répondre à cette question, nous avons effectué des enregistrements électrophysiologiques de populations d'unités uniques dans le CPFm dorsal pendant que des souris étaient confrontées à des signaux de menace suscitant des comportements défensifs, et nous avons procédé à des inactivations pharmacologiques et optogénétiques de cette zone et de l'amygdale. Nos données indiquent que la présence de signaux de menace induit une dynamique de codage stable des représentations internes dans le CPFm dorsal, nécessaire à l'apprentissage de comportements défensifs. De plus, ces représentations neuronales reflètent principalement des associations apprises plutôt que des comportements défensifs spécifiques, et la construction de ces représentations dépend de l'intégrité fonctionnelle de l'amygdale.


Asunto(s)
Amígdala del Cerebelo , Corteza Prefrontal , Ratones , Animales , Vías Nerviosas/fisiología , Amígdala del Cerebelo/fisiología , Corteza Prefrontal/fisiología , Aprendizaje/fisiología , Miedo/fisiología
6.
Sci Rep ; 13(1): 16562, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783729

RESUMEN

Despite the popularity of fiber photometry (FP), its integration with operant behavior paradigms is progressing slowly. This can be attributed to the complex protocols in operant behavior - resulting in a combination of diverse non-predictable behavioral responses and scheduled events, thereby complicating data analysis. To overcome this, we developed Pyfiber, an open-source python library which facilitates the merge of FP with operant behavior by relating changes in fluorescent signals within a neuronal population to behavioral responses and events. Pyfiber helps to 1. Extract events and responses that occur in operant behavior, 2. Extract and process the FP signals, 3. Select events of interest and align them to the corresponding FP signals, 4. Apply appropriate signal normalization and analysis according to the type of events, 5. Run analysis on multiple individuals and sessions, 6. Collect results in an easily readable format. Pyfiber is suitable for use with many different fluorescent sensors and operant behavior protocols. It was developed using Doric lenses FP systems and Imetronic behavioral systems, but it possesses the capability to process data from alternative systems. This work sets a solid foundation for analyzing the relationship between different dimensions of complex behavioral paradigms with fluorescent signals from brain regions of interest.


Asunto(s)
Encéfalo , Fotometría , Humanos , Fotometría/métodos , Neuronas/fisiología , Condicionamiento Operante/fisiología
7.
Nat Neurosci ; 26(12): 2147-2157, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37904042

RESUMEN

Behavioral adaptation to potential threats requires both a global representation of danger to prepare the organism to react in a timely manner but also the identification of specific threatening situations to select the appropriate behavioral responses. The prefrontal cortex is known to control threat-related behaviors, yet it is unknown whether it encodes global defensive states and/or the identity of specific threatening encounters. Using a new behavioral paradigm that exposes mice to different threatening situations, we show that the dorsomedial prefrontal cortex (dmPFC) encodes a general representation of danger while simultaneously encoding a specific neuronal representation of each threat. Importantly, the global representation of danger persisted in error trials that instead lacked specific threat identity representations. Consistently, optogenetic prefrontal inhibition impaired overall behavioral performance and discrimination of different threatening situations without any bias toward active or passive behaviors. Together, these data indicate that the prefrontal cortex encodes both a global representation of danger and specific representations of threat identity to control the selection of defensive behaviors.


Asunto(s)
Neuronas , Corteza Prefrontal , Ratones , Animales , Corteza Prefrontal/fisiología , Neuronas/fisiología , Optogenética
8.
Front Cell Neurosci ; 17: 1212202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435048

RESUMEN

Imbalance between excitation and inhibition in the cerebral cortex is one of the main theories in neuropsychiatric disorder pathophysiology. Cortical inhibition is finely regulated by a variety of highly specialized GABAergic interneuron types, which are thought to organize neural network activities. Among interneurons, axo-axonic cells are unique in making synapses with the axon initial segment of pyramidal neurons. Alterations of axo-axonic cells have been proposed to be implicated in disorders including epilepsy, schizophrenia and autism spectrum disorder. However, evidence for the alteration of axo-axonic cells in disease has only been examined in narrative reviews. By performing a systematic review of studies investigating axo-axonic cells and axo-axonic communication in epilepsy, schizophrenia and autism spectrum disorder, we outline convergent findings and discrepancies in the literature. Overall, the implication of axo-axonic cells in neuropsychiatric disorders might have been overstated. Additional work is needed to assess initial, mostly indirect findings, and to unravel how defects in axo-axonic cells translates to cortical dysregulation and, in turn, to pathological states.

9.
Curr Opin Neurobiol ; 76: 102600, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35809501

RESUMEN

Our understanding of the neuronal circuits and mechanisms of defensive systems has been primarily dominated by studies focusing on the contribution of individual cells in the processing of threat-predictive cues, defensive responses, the extinction of such responses and the contextual modulation of threat-related behavior. These studies have been key in establishing threat-related circuits and mechanisms. Yet, they fall short in answering long-standing questions related to the integrative processing of distinct threatening cues, behavioral states induced by threat-related events, or the bridging from sensory processing of threat-related cues to specific defensive responses. Recent conceptual and technical developments has allowed the monitoring of large populations of neurons, which in addition to advanced analytic tools, have improved our understanding of how collective neuronal activity supports threat-related behaviors. In this review, we discuss the current knowledge of neuronal population codes within threat-related networks, in the context of aversive motivated behavior and the study of defensive systems.


Asunto(s)
Señales (Psicología) , Sensación
10.
Sci Adv ; 8(30): eabo0689, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895817

RESUMEN

Descending control from the brain to the spinal cord shapes our pain experience, ranging from powerful analgesia to extreme sensitivity. Increasing evidence from both preclinical and clinical studies points to an imbalance toward descending facilitation as a substrate of pathological pain, but the underlying mechanisms remain unknown. We used an optogenetic approach to manipulate serotonin (5-HT) neurons of the nucleus raphe magnus that project to the dorsal horn of the spinal cord. We found that 5-HT neurons exert an analgesic action in naïve mice that becomes proalgesic in an experimental model of neuropathic pain. We show that spinal KCC2 hypofunction turns this descending inhibitory control into paradoxical facilitation; KCC2 enhancers restored 5-HT-mediated descending inhibition and analgesia. Last, combining selective serotonin reuptake inhibitors (SSRIs) with a KCC2 enhancer yields effective analgesia against nerve injury-induced pain hypersensitivity. This uncovers a previously unidentified therapeutic path for SSRIs against neuropathic pain.

11.
Mol Psychiatry ; 26(12): 7130-7140, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34526669

RESUMEN

The dentate gyrus is one of the only brain regions that continues its development after birth in rodents. Adolescence is a very sensitive period during which cognitive competences are programmed. We investigated the role of dentate granule neurons (DGNs) born during adolescence in spatial memory and compared them with those generated earlier in life (in embryos or neonates) or during adulthood by combining functional imaging, retroviral and optogenetic tools to tag and silence DGNs. By imaging DGNs expressing Zif268, a proxy for neuronal activity, we found that neurons generated in adolescent rats (and not embryos or neonates) are transiently involved in spatial memory processing. In contrast, adult-generated DGNs are recruited at a later time point when animals are older. A causal relationship between the temporal origin of DGNs and spatial memory was confirmed by silencing DGNs in behaving animals. Our results demonstrate that the emergence of spatial memory depends on neurons born during adolescence, a function later assumed by neurons generated during adulthood.


Asunto(s)
Giro Dentado , Memoria Espacial , Animales , Giro Dentado/fisiología , Neuronas/fisiología , Ratas , Memoria Espacial/fisiología
12.
Nature ; 595(7869): 690-694, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262175

RESUMEN

Coping with threatening situations requires both identifying stimuli that predict danger and selecting adaptive behavioural responses to survive1. The dorsomedial prefrontal cortex (dmPFC) is a critical structure that is involved in the regulation of threat-related behaviour2-4. However, it is unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks to successfully drive adaptive responses. Here we used a combination of extracellular recordings, neuronal decoding approaches, pharmacological and optogenetic manipulations to show that, in mice, threat representations and the initiation of avoidance behaviour are dynamically encoded in the overall population activity of dmPFC neurons. Our data indicate that although dmPFC population activity at stimulus onset encodes sustained threat representations driven by the amygdala, it does not predict action outcome. By contrast, transient dmPFC population activity before the initiation of action reliably predicts avoided from non-avoided trials. Accordingly, optogenetic inhibition of prefrontal activity constrained the selection of adaptive defensive responses in a time-dependent manner. These results reveal that the adaptive selection of defensive responses relies on a dynamic process of information linking threats with defensive actions, unfolding within prefrontal networks.


Asunto(s)
Reacción de Prevención , Mecanismos de Defensa , Neuronas/fisiología , Corteza Prefrontal/fisiología , Amígdala del Cerebelo/fisiología , Animales , Miedo , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética
13.
Nat Commun ; 12(1): 4156, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230461

RESUMEN

Fear extinction is an adaptive process whereby defensive responses are attenuated following repeated experience of prior fear-related stimuli without harm. The formation of extinction memories involves interactions between various corticolimbic structures, resulting in reduced central amygdala (CEA) output. Recent studies show, however, the CEA is not merely an output relay of fear responses but contains multiple neuronal subpopulations that interact to calibrate levels of fear responding. Here, by integrating behavioural, in vivo electrophysiological, anatomical and optogenetic approaches in mice we demonstrate that fear extinction produces reversible, stimulus- and context-specific changes in neuronal responses to conditioned stimuli in functionally and genetically defined cell types in the lateral (CEl) and medial (CEm) CEA. Moreover, we show these alterations are absent when extinction is deficient and that selective silencing of protein kinase C delta-expressing (PKCδ) CEl neurons impairs fear extinction. Our findings identify CEA inhibitory microcircuits that act as critical elements within the brain networks mediating fear extinction.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Animales , Conducta Animal , Condicionamiento Clásico/fisiología , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
14.
Neuron ; 109(15): 2380-2397, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34146470

RESUMEN

Translational research on post-traumatic stress disorder (PTSD) has produced limited improvements in clinical practice. Fear conditioning (FC) is one of the dominant animal models of PTSD. In fact, FC is used in many different ways to model PTSD. The variety of FC-based models is ill defined, creating confusion and conceptual vagueness, which in turn impedes translation into the clinic. This article takes a historical and conceptual approach to provide a comprehensive picture of current research and help reorient the research focus. This work historically reviews the variety of models that have emerged from the initial association of PTSD with FC, highlighting conceptual pitfalls that have limited the translation of animal research into clinical advances. We then provide some guidance on how future translational research could benefit from conceptual and technological improvements to translate basic findings in patients. This objective will require transdisciplinary approaches and should involve physicians, engineers, philosophers, and neuroscientists.


Asunto(s)
Condicionamiento Psicológico , Modelos Animales de Enfermedad , Miedo , Trastornos por Estrés Postraumático , Investigación Biomédica Traslacional , Animales
15.
Nat Commun ; 12(1): 2605, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972521

RESUMEN

Brain-body interactions are thought to be essential in emotions but their physiological basis remains poorly understood. In mice, regular 4 Hz breathing appears during freezing after cue-fear conditioning. Here we show that the olfactory bulb (OB) transmits this rhythm to the dorsomedial prefrontal cortex (dmPFC) where it organizes neural activity. Reduction of the respiratory-related 4 Hz oscillation, via bulbectomy or optogenetic perturbation of the OB, reduces freezing. Behavioural modelling shows that this is due to a specific reduction in freezing maintenance without impacting its initiation, thus dissociating these two phenomena. dmPFC LFP and firing patterns support the region's specific function in freezing maintenance. In particular, population analysis reveals that network activity tracks 4 Hz power dynamics during freezing and reaches a stable state at 4 Hz peak that lasts until freezing termination. These results provide a potential mechanism and a functional role for bodily feedback in emotions and therefore shed light on the historical James-Cannon debate.


Asunto(s)
Miedo/fisiología , Bulbo Olfatorio/fisiología , Corteza Prefrontal/fisiología , Respiración , Potenciales de Acción/fisiología , Animales , Antitiroideos/administración & dosificación , Antitiroideos/farmacología , Electrofisiología , Interneuronas/citología , Interneuronas/fisiología , Masculino , Cadenas de Markov , Metimazol/administración & dosificación , Metimazol/farmacología , Ratones , Ratones Endogámicos C57BL , Modelos Psicológicos , Optogenética , Periodicidad , Células Piramidales/citología , Células Piramidales/fisiología , Respiración/efectos de los fármacos
16.
Curr Opin Neurobiol ; 52: 60-64, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29705550

RESUMEN

The behavioral repertoire of an organism can be highly diverse, spanning from social to defensive. How an animal efficiently switches between distinct behaviors is a fundamental question whose inquiry will provide insights into the mechanisms that are necessary for an organism's survival. Previous work aimed at identifying the neural systems responsible for defensive behaviors, such as freezing, has demonstrated critical interactions between the prefrontal cortex and amygdala. Indeed, this foundational research has provided an indispensable anatomical framework that investigators are now using to understand the physiological mechanisms of defined neural circuits within the prefrontal cortex that code for the rapid and flexible expression of defensive behaviors. Here we review recent findings demonstrating temporal and rate coding mechanisms of freezing behavior in the prefrontal cortex. We hypothesize that anatomical features, such as target structure and cortical layer, as well as the nature of the information to be coded, may be critical factors determining the coding scheme. Furthermore, detailed behavioral analyses may reveal subtypes of defensive behaviors that represent the principle factor governing coding selection.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Reacción Cataléptica de Congelación/fisiología , Corteza Prefrontal/fisiología , Animales
17.
Neuron ; 97(4): 898-910.e6, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29398355

RESUMEN

Survival critically depends on selecting appropriate defensive or exploratory behaviors and is strongly influenced by the surrounding environment. Contextual discrimination is a fundamental process that is thought to depend on the prefrontal cortex to integrate sensory information from the environment and regulate adaptive responses to threat during uncertainty. However, the precise prefrontal circuits necessary for discriminating a previously threatening context from a neutral context remain unknown. Using a combination of single-unit recordings and optogenetic manipulations, we identified a neuronal subpopulation in the dorsal medial prefrontal cortex (dmPFC) that projects to the lateral and ventrolateral periaqueductal gray (l/vlPAG) and is selectively activated during contextual fear discrimination. Moreover, optogenetic activation and inhibition of this neuronal population promoted contextual fear discrimination and generalization, respectively. Our results identify a subpopulation of dmPFC-l/vlPAG-projecting neurons that control switching between different emotional states during contextual discrimination.


Asunto(s)
Discriminación en Psicología/fisiología , Miedo/fisiología , Neuronas/fisiología , Sustancia Gris Periacueductal/fisiología , Corteza Prefrontal/fisiología , Animales , Condicionamiento Clásico , Generalización Psicológica/fisiología , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Optogenética
18.
Bio Protoc ; 8(12): e2888, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285997

RESUMEN

Declarative memory formation depends on the hippocampus and declines in aging. Two functions of the hippocampus, temporal binding and relational organization (Rawlins and Tsaltas, 1983; Eichenbaum et al., 1992 ; Cohen et al., 1997 ), are known to decline in aging (Leal and Yassa, 2015). However, in the literature distinct procedures have been used to study these two functions. Here, we describe the experimental procedures used to investigate how these two processes are related in the formation of declarative memory and how they are compromised in aging ( Sellami et al., 2017 ). First, we studied temporal binding using a one-trial learning procedure: trace fear conditioning. It is classical Pavlovian conditioning requiring temporal binding since a brief temporal gap separates the conditioned stimulus (CS) and unconditioned stimulus (US) presentations. We combined the trace fear condition procedure with an optogenetic approach, and we showed that the temporal binding relies on dorsal (d)CA1 activity over temporal gaps. Then, we studied the interaction between temporal binding and relational organization in declarative memory formation using a two-phase radial-maze task in mice and its virtual analog in humans. The behavioral procedure comprises an initial learning phase where subjects learned the constant rewarding /no rewarding valence of each arm, followed by a test phase where the reward contingencies among the arms remained unchanged but where the arms were recombined to assess flexibility, a cardinal property of declarative memory. We demonstrated that dCA1-dependent temporal binding is necessary for the development of a relational organization of memories that allows flexible declarative memory expression. Furthermore, in aging, the degradation of declarative memory is due to a reduction of temporal binding capacity that prevents relation organization.

19.
Proc Natl Acad Sci U S A ; 114(38): 10262-10267, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874586

RESUMEN

Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.


Asunto(s)
Envejecimiento/fisiología , Región CA1 Hipocampal/fisiología , Trastornos de la Memoria/etiología , Memoria/fisiología , Animales , Masculino , Ratones Endogámicos C57BL
20.
Int J Neuropsychopharmacol ; 20(8): 654-659, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28453642

RESUMEN

Background: Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. Methods: We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Results: Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. Conclusions: These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867.


Asunto(s)
Complejo Nuclear Basolateral/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Neuronas/efectos de los fármacos , Antagonistas de los Receptores de Orexina/farmacología , Psicotrópicos/farmacología , Animales , Complejo Nuclear Basolateral/citología , Complejo Nuclear Basolateral/metabolismo , Benzoxazoles/farmacología , Calbindinas/metabolismo , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Consolidación de la Memoria/efectos de los fármacos , Consolidación de la Memoria/fisiología , Ratones Endogámicos C57BL , Naftiridinas , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores de Orexina/metabolismo , Parvalbúminas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Urea/análogos & derivados , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA