Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(3): 942-958, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38037755

RESUMEN

Although small extracellular vesicles (sEVs) have promising features as an emerging therapeutic format for a broad spectrum of applications, for example, blood-brain-barrier permeability, low immunogenicity, and targeted delivery, economic manufacturability will be a crucial factor for the therapeutic applicability of sEVs. In the past, bioprocess optimization and cell line engineering improved titers of classical biologics multifold. We therefore performed a design of experiments (DoE) screening to identify beneficial bioprocess conditions for sEV production in HEK293F suspension cells. Short-term hyperthermia at 40°C elevated volumetric productivity 5.4-fold while sEVs displayed improved exosomal characteristics and cells retained >90% viability. Investigating the effects of hyperthermia via transcriptomics and proteomics analyses, an expectable, cellular heat-shock response was found together with an upregulation of many exosome biogenesis and vesicle trafficking related molecules, which could cause the productivity boost in tandem with heat shock proteins (HSPs), like HSP90 and HSC70. Because of these findings, a selection of 44 genes associated with exosome biogenesis, vesicle secretion machinery, or heat-shock response was screened for their influence on sEV production. Overexpression of six genes, CHMP1A, CHMP3, CHMP5, VPS28, CD82, and EZR, significantly increased both sEV secretion and titer, making them suitable targets for cell line engineering.


Asunto(s)
Vesículas Extracelulares , Humanos , Células HEK293 , Vesículas Extracelulares/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
2.
Front Bioeng Biotechnol ; 10: 1010719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312557

RESUMEN

Chinese hamster ovary (CHO) cells are the most important platform for producing biotherapeutics. Random integration of a transgene into epigenetically instable regions of the genome results in silencing of the gene of interest and loss of productivity during upstream processing. Therefore, cost- and time-intensive long-term stability studies must be performed. Site-specific integration into safe harbors is a strategy to overcome these limitations of conventional cell line design. Recent publications predict safe harbors in CHO cells based on omics data sets or by learning from random integrations, but those predictions remain theory. In this study, we established a CRISPR/Cas9-mediated site-specific integration strategy based on ChIP-seq data to improve stability of recombinant CHO cells. Therefore, a ChIP experiment from the exponential and stationary growth phase of a fed-batch cultivation of CHO-K1 cells yielded 709 potentially stable integration sites. The reporter gene eGFP was integrated into three regions harboring specific modifications by CRISPR/Cas9. Targeted Cas9 nanopore sequencing showed site-specific integration in all 3 cell pools with a specificity between 23 and 73%. Subsequently, the cells with the three different integration sites were compared with the randomly integrated donor vector in terms of transcript level, productivity, gene copy numbers and stability. All site-specific integrations showed an increase in productivity and transcript levels of up to 7.4-fold. In a long-term cultivation over 70 generations, two of the site-specific integrations showed a stable productivity (>70%) independent of selection pressure.

3.
Front Bioeng Biotechnol ; 9: 716343, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722476

RESUMEN

Scaling down bioproduction processes has become a major driving force for more accelerated and efficient process development over the last decades. Especially expensive and time-consuming processes like the production of biopharmaceuticals with mammalian cell lines benefit clearly from miniaturization, due to higher parallelization and increased insights while at the same time decreasing experimental time and costs. Lately, novel microfluidic methods have been developed, especially microfluidic single-cell cultivation (MSCC) devices have been proved to be valuable to miniaturize the cultivation of mammalian cells. So far, growth characteristics of microfluidic cultivated cell lines were not systematically compared to larger cultivation scales; however, validation of a miniaturization tool against initial cultivation scales is mandatory to prove its applicability for bioprocess development. Here, we systematically investigate growth, morphology, and eGFP production of CHO-K1 cells in different cultivation scales ranging from a microfluidic chip (230 nl) to a shake flask (125 ml) and laboratory-scale stirred tank bioreactor (2.0 L). Our study shows a high comparability regarding specific growth rates, cellular diameters, and eGFP production, which proves the feasibility of MSCC as a miniaturized cultivation tool for mammalian cell culture. In addition, we demonstrate that MSCC provides insights into cellular heterogeneity and single-cell dynamics concerning growth and production behavior which, when occurring in bioproduction processes, might severely affect process robustness.

4.
Appl Microbiol Biotechnol ; 105(9): 3673-3689, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33937930

RESUMEN

In biopharmaceutical production, Chinese hamster ovary (CHO) cells derived from Cricetulus griseus remain the most commonly used host cell for recombinant protein production, especially antibodies. Over the last decade, in-depth multi-omics characterization of these CHO cells provided data for extensive cell line engineering and corresponding increases in productivity. However, exosomes, extracellular vesicles containing proteins and nucleic acids, are barely researched at all in CHO cells. Exosomes have been proven to be a ubiquitous mediator of intercellular communication and are proposed as new biopharmaceutical format for drug delivery, indicator reflecting host cell condition and anti-apoptotic factor in spent media. Here we provide a brief overview of different separation techniques and subsequently perform a proteome and regulatory, non-coding RNA analysis of exosomes, derived from lab-scale bioreactor cultivations of a CHO-K1 cell line, to lay out reference data for further research in the field. Applying bottom-up orbitrap shotgun proteomics and next-generation small RNA sequencing, we detected 1395 proteins, 144 micro RNA (miRNA), and 914 PIWI-interacting RNA (piRNA) species differentially across the phases of a batch cultivation process. The exosomal proteome and RNA data are compared with other extracellular fractions and cell lysate, yielding several significantly exosome-enriched species. Graphical Abstract KEY POINTS: • First-time comprehensive protein and miRNA characterization of CHO exosomes. • Isolation protocol and time point of bioprocess strongly affect quality of extracellular vesicles. • CHO-derived exosomes also contain numerous piRNA species of yet unknown function.


Asunto(s)
Exosomas , Animales , Células CHO , Cricetinae , Cricetulus , Proteoma , Proteómica
5.
Cancers (Basel) ; 13(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800955

RESUMEN

Cancer stem cells (CSCs) are crucial mediators of tumor growth, metastasis, therapy resistance, and recurrence in a broad variety of human cancers. Although their biology is increasingly investigated within the distinct types of cancer, direct comparisons of CSCs from different tumor types allowing comprehensive mechanistic insights are rarely assessed. In the present study, we isolated CSCs from endometrioid carcinomas, glioblastoma multiforme as well as adenocarcinomas of lung and prostate and assessed their global transcriptomes using full-length cDNA nanopore sequencing. Despite the expression of common CSC markers, principal component analysis showed a distinct separation of the CSC populations into three clusters independent of the specific type of tumor. However, GO-term and KEGG pathway enrichment analysis revealed upregulated genes related to ribosomal biosynthesis, the mitochondrion, oxidative phosphorylation, and glycolytic pathways, as well as the proteasome, suggesting a great extent of metabolic flexibility in CSCs. Interestingly, the GO term "NF-kB binding" was likewise found to be elevated in all investigated CSC populations. In summary, we here provide evidence for high global transcriptional similarities between CSCs from various tumors, which particularly share upregulated gene expression associated with mitochondrial and ribosomal activity. Our findings may build the basis for identifying novel therapeutic strategies targeting CSCs.

6.
Rapid Commun Mass Spectrom ; 35(2): e8873, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32583429

RESUMEN

RATIONALE: High-throughput reliable data generation has become a substantial requirement in many "omics" investigations. In proteomics the sample preparation workflow consists of multiple steps adding more bias to the sample with each additional manual step. Especially for label-free quantification experiments, this drastically impedes reproducible quantification of proteins in replicates. Here, a positive pressure workstation was evaluated to increase automation of sample preparation and reduce workload as well as consumables. METHODS: Digested peptide samples were purified utilizing a new semi-automated sample preparation device, the Resolvex A200, followed by nanospray liquid chromatography/electrospray ionization (nLC/ESI) Orbitrap tandem mass spectrometry (MS/MS) measurements. In addition, the sorbents Maestro and WWP2 (available in conventional cartridge and dual-chamber narrow-bore extraction columns) were compared with Sep-Pak C18 cartridges. Raw data was analyzed by MaxQuant and Perseus software. RESULTS: The semi-automated workflow with the Resolvex A200 workstation and both new sorbents produced highly reproducible results within 10-300 µg of peptide starting material. The new workflow performed equally as well as the routinely conducted manual workflow with similar technical variability in MS/MS-based identifications of peptides and proteins. A first application of the system to a biological question contributed to highly reliable results, where time-resolved proteomic data was separated by principal component analysis (PCA) and hierarchical clustering. CONCLUSIONS: The new workstation was successfully established for proteolytic peptide purification in our proteomic workflow without any drawbacks. Highly reproducible results were obtained in decreased time per sample, which will facilitate further large-scale proteomic investigations.


Asunto(s)
Fragmentos de Péptidos , Proteoma , Proteómica/métodos , Automatización/instrumentación , Diseño de Equipo , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Proteoma/análisis , Proteoma/química , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...