Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(15)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566037

RESUMEN

Chromatin regulatory processes physically take place in the environment of the cell nucleus, which is filled with the chromosomes and a plethora of smaller biomolecules. The nucleus contains macromolecular assemblies of different sizes, from nanometer-sized protein complexes to micrometer-sized biomolecular condensates, chromosome territories, and nuclear bodies. This multiscale organization impacts the transport processes within the nuclear interior, the global mechanical properties of the nucleus, and the way the nucleus senses and reacts to mechanical stimuli. Here, we discuss recent work on these aspects, including microrheology and micromanipulation experiments assessing the material properties of the nucleus and its subcomponents. We summarize how the properties of multiscale media depend on the time and length scales probed in the experiment, and we reconcile seemingly contradictory observations made on different scales. We also revisit the concept of liquid-like and solid-like material properties for complex media such as the nucleus. We propose that the nucleus can be considered a multiscale viscoelastic medium composed of three major components with distinct properties: the lamina, the chromatin network, and the nucleoplasmic fluid. This multicomponent organization enables the nucleus to serve its different functions as a reaction medium on the nanoscale and as a mechanosensor and structural scaffold on the microscale.


Asunto(s)
Núcleo Celular , Cromatina , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromosomas
2.
Nucleic Acids Res ; 51(6): 2800-2817, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36806960

RESUMEN

RecA-mediated homologous recombination (HR) is a key mechanism for genome maintenance and plasticity in bacteria. It proceeds through RecA assembly into a dynamic filament on ssDNA, the presynaptic filament, which mediates DNA homology search and ordered DNA strand exchange. Here, we combined structural, single molecule and biochemical approaches to characterize the ATP-dependent assembly mechanism of the presynaptic filament of RecA from Streptococcus pneumoniae (SpRecA), in comparison to the Escherichia coli RecA (EcRecA) paradigm. EcRecA polymerization on ssDNA is assisted by the Single-Stranded DNA Binding (SSB) protein, which unwinds ssDNA secondary structures that block EcRecA nucleofilament growth. We report by direct microscopic analysis of SpRecA filamentation on ssDNA that neither of the two paralogous pneumococcal SSBs could assist the extension of SpRecA nucleopolymers. Instead, we found that the conserved RadA helicase promotes SpRecA nucleofilamentation in an ATP-dependent manner. This allowed us to solve the atomic structure of such a long native SpRecA nucleopolymer by cryoEM stabilized with ATPγS. It was found to be equivalent to the crystal structure of the EcRecA filament with a marked difference in how RecA mediates nucleotide orientation in the stretched ssDNA. Then, our results show that SpRecA and EcRecA HR activities are different, in correlation with their distinct ATP-dependent ssDNA binding modes.


Asunto(s)
Rec A Recombinasas , Streptococcus pneumoniae , Adenosina Trifosfato/metabolismo , ADN/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Rec A Recombinasas/metabolismo , Rec A Recombinasas/ultraestructura , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Microscopía por Crioelectrón
3.
Biophys J ; 120(7): 1288-1300, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33640380

RESUMEN

Living organisms typically store their genomic DNA in a condensed form. Mechanistically, DNA condensation can be driven by macromolecular crowding, multivalent cations, or positively charged proteins. At low DNA concentration, condensation triggers the conformational change of individual DNA molecules into a compacted state, with distinct morphologies. Above a critical DNA concentration, condensation goes along with phase separation into a DNA-dilute and a DNA-dense phase. The latter DNA-dense phase can have different material properties and has been reported to be rather liquid-like or solid-like depending on the characteristics of the DNA and the solvent composition. Here, we systematically assess the influence of DNA length on the properties of the resulting condensates. We show that short DNA molecules with sizes below 1 kb can form dynamic liquid-like assemblies when condensation is triggered by polyethylene glycol and magnesium ions, binding of linker histone H1, or nucleosome reconstitution in combination with linker histone H1. With increasing DNA length, molecules preferentially condense into less dynamic more solid-like assemblies, with phage λ-DNA with 48.5 kb forming mostly solid-like assemblies under the conditions assessed here. The transition from liquid-like to solid-like condensates appears to be gradual, with DNA molecules of roughly 1-10 kb forming condensates with intermediate properties. Titration experiments with linker histone H1 suggest that the fluidity of condensates depends on the net number of attractive interactions established by each DNA molecule. We conclude that DNA molecules that are much shorter than a typical human gene are able to undergo liquid-liquid phase separation, whereas longer DNA molecules phase separate by default into rather solid-like condensates. We speculate that the local distribution of condensing factors can modulate the effective length of chromosomal domains in the cell. We anticipate that the link between DNA length and fluidity established here will improve our understanding of biomolecular condensates involving DNA.


Asunto(s)
ADN , Proteínas , Cationes , ADN/genética , Humanos , Sustancias Macromoleculares
4.
J Cell Sci ; 129(20): 3756-3769, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591259

RESUMEN

Coordination between membrane trafficking and actin polymerization is fundamental in cell migration, but a dynamic view of the underlying molecular mechanisms is still missing. The Rac1 GTPase controls actin polymerization at protrusions by interacting with its effector, the Wave regulatory complex (WRC). The exocyst complex, which functions in polarized exocytosis, has been involved in the regulation of cell motility. Here, we show a physical and functional connection between exocyst and WRC. Purified components of exocyst and WRC directly associate in vitro, and interactions interfaces are identified. The exocyst-WRC interaction is confirmed in cells by co-immunoprecipitation and is shown to occur independently of the Arp2/3 complex. Disruption of the exocyst-WRC interaction leads to impaired migration. By using time-lapse microscopy coupled to image correlation analysis, we visualized the trafficking of the WRC towards the front of the cell in nascent protrusions. The exocyst is necessary for WRC recruitment at the leading edge and for resulting cell edge movements. This direct link between the exocyst and WRC provides a new mechanistic insight into the spatio-temporal regulation of cell migration.


Asunto(s)
Movimiento Celular , Extensiones de la Superficie Celular/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células HEK293 , Humanos , Unión Proteica , Subunidades de Proteína/metabolismo
6.
J Cell Biol ; 203(6): 1063-79, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24344185

RESUMEN

Remodeling of the extracellular matrix by carcinoma cells during metastatic dissemination requires formation of actin-based protrusions of the plasma membrane called invadopodia, where the trans-membrane type 1 matrix metalloproteinase (MT1-MMP) accumulates. Here, we describe an interaction between the exocyst complex and the endosomal Arp2/3 activator Wiskott-Aldrich syndrome protein and Scar homolog (WASH) on MT1-MMP­containing late endosomes in invasive breast carcinoma cells. We found that WASH and exocyst are required for matrix degradation by an exocytic mechanism that involves tubular connections between MT1-MMP­positive late endosomes and the plasma membrane in contact with the matrix. This ensures focal delivery of MT1-MMP and supports pericellular matrix degradation and tumor cell invasion into different pathologically relevant matrix environments. Our data suggest a general mechanism used by tumor cells to breach the basement membrane and for invasive migration through fibrous collagen-enriched tissues surrounding the tumor.


Asunto(s)
Exocitosis , Proteínas de Microfilamentos/fisiología , Proteínas de Transporte Vesicular/fisiología , Adenocarcinoma/patología , Neoplasias de la Mama/patología , Endosomas/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Femenino , Humanos , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/ultraestructura , Proteínas de Transporte Vesicular/metabolismo
7.
PLoS One ; 7(12): e52627, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300727

RESUMEN

Caveolae are specialized domains of the plasma membrane, which play key roles in signaling, endocytosis and mechanosensing. Using total internal reflection fluorescent microscopy (TIRF-M), we observe that the exocyst subunit Exo70 forms punctuate structures at the plasma membrane and partially localizes with caveolin-1, the main component of caveolae. Upon cell detachment, we found that Exo70 accumulates with caveolin-1-positive vesicular structures. Upon cell re-adhesion, caveolin-1 traffics back to the plasma membrane in a multistep process involving microtubules and actin cytoskeleton. In addition, silencing of Exo70 redirects caveolin-1 to focal adhesions identified by markers such as α5 integrin or vinculin. Based on these findings, we conclude that Exo70 is involved in caveolin-1 recycling to the plasma membrane during re-adhesion of the cells to the substratum.


Asunto(s)
Caveolina 1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Caveolas/metabolismo , Adhesión Celular , Adhesiones Focales/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Subunidades de Proteína/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Proteínas de Transporte Vesicular/genética
8.
EMBO J ; 31(4): 1000-13, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22193718

RESUMEN

ß-Thymosin (ßT) and WH2 domains are widespread, intrinsically disordered actin-binding peptides that display significant sequence variability and different regulations of actin self-assembly in motile and morphogenetic processes. Here, we reveal the structural mechanisms by which, in their 1:1 stoichiometric complexes with actin, they either inhibit assembly by sequestering actin monomers like Thymosin-ß4, or enhance motility by directing polarized filament assembly like Ciboulot ßT. We combined mutational, functional or structural analysis by X-ray crystallography, SAXS (small angle X-ray scattering) and NMR on Thymosin-ß4, Ciboulot, TetraThymosinß and the long WH2 domain of WASP-interacting protein. The latter sequesters G-actin with the same molecular mechanisms as Thymosin-ß4. Functionally different ßT/WH2 domains differ by distinct dynamics of their C-terminal half interactions with G-actin pointed face. These C-terminal interaction dynamics are controlled by the strength of electrostatic interactions with G-actin. At physiological ionic strength, a single salt bridge with actin located next to their central LKKT/V motif induces G-actin sequestration in both isolated long ßT and WH2 domains. The results open perspectives for elucidating the functions of ßT/WH2 domains in other modular proteins.


Asunto(s)
Actinas/metabolismo , Timosina/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Concentración Osmolar , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Timosina/química
9.
Biochem J ; 433(3): 403-9, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21235523

RESUMEN

Motile processes are critical for several physiological and pathological situations such as embryonic development, tumour dissemination and metastasis. Migrating cells, or developing neurons, need to establish front-rear polarity consisting of actin-driven extension of the leading edge and traffic of components that are essential for membrane extension and cell adhesion at the front. Previously, several studies have suggested that the exocyst complex is critical for the establishment and maintenance of cell polarity. This octameric complex controls the docking and insertion of exocytic vesicles to growing areas of the plasma membrane. The aim of the present review is to detail recent advances concerning the molecular and structural organization of the exocyst complex that help to elucidate its role in cell polarity. We will also review the function of the exocyst complex and some of its key interacting partners [including the small GTP-binding protein Ral, aPKCs (atypical protein kinase Cs) and proteins involved in actin assembly] in the formation of plasma extensions at the leading edge, growth cone formation during axonal extension and generation of cell movement.


Asunto(s)
Polaridad Celular , Exocitosis , Animales , Movimiento Celular , Conos de Crecimiento , Humanos , Complejos Multiproteicos/metabolismo
10.
PLoS Biol ; 8(6): e1000387, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20532239

RESUMEN

Actin capping and cross-linking proteins regulate the dynamics and architectures of different cellular protrusions. Eps8 is the founding member of a unique family of capping proteins capable of side-binding and bundling actin filaments. However, the structural basis through which Eps8 exerts these functions remains elusive. Here, we combined biochemical, molecular, and genetic approaches with electron microscopy and image analysis to dissect the molecular mechanism responsible for the distinct activities of Eps8. We propose that bundling activity of Eps8 is mainly mediated by a compact four helix bundle, which is contacting three actin subunits along the filament. The capping activity is mainly mediated by a amphipathic helix that binds within the hydrophobic pocket at the barbed ends of actin blocking further addition of actin monomers. Single-point mutagenesis validated these modes of binding, permitting us to dissect Eps8 capping from bundling activity in vitro. We further showed that the capping and bundling activities of Eps8 can be fully dissected in vivo, demonstrating the physiological relevance of the identified Eps8 structural/functional modules. Eps8 controls actin-based motility through its capping activity, while, as a bundler, is essential for proper intestinal morphogenesis of developing Caenorhabditis elegans.


Asunto(s)
Actinas/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Espectrometría de Masas , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Termodinámica
11.
PLoS Biol ; 7(6): e1000138, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19564905

RESUMEN

The regulation of filopodia plays a crucial role during neuronal development and synaptogenesis. Axonal filopodia, which are known to originate presynaptic specializations, are regulated in response to neurotrophic factors. The structural components of filopodia are actin filaments, whose dynamics and organization are controlled by ensembles of actin-binding proteins. How neurotrophic factors regulate these latter proteins remains, however, poorly defined. Here, using a combination of mouse genetic, biochemical, and cell biological assays, we show that genetic removal of Eps8, an actin-binding and regulatory protein enriched in the growth cones and developing processes of neurons, significantly augments the number and density of vasodilator-stimulated phosphoprotein (VASP)-dependent axonal filopodia. The reintroduction of Eps8 wild type (WT), but not an Eps8 capping-defective mutant, into primary hippocampal neurons restored axonal filopodia to WT levels. We further show that the actin barbed-end capping activity of Eps8 is inhibited by brain-derived neurotrophic factor (BDNF) treatment through MAPK-dependent phosphorylation of Eps8 residues S624 and T628. Additionally, an Eps8 mutant, impaired in the MAPK target sites (S624A/T628A), displays increased association to actin-rich structures, is resistant to BDNF-mediated release from microfilaments, and inhibits BDNF-induced filopodia. The opposite is observed for a phosphomimetic Eps8 (S624E/T628E) mutant. Thus, collectively, our data identify Eps8 as a critical capping protein in the regulation of axonal filopodia and delineate a molecular pathway by which BDNF, through MAPK-dependent phosphorylation of Eps8, stimulates axonal filopodia formation, a process with crucial impacts on neuronal development and synapse formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas del Citoesqueleto/metabolismo , Neuronas/efectos de los fármacos , Seudópodos/fisiología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Axones/metabolismo , Axones/fisiología , Línea Celular , Células Cultivadas , Proteínas del Citoesqueleto/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Interferencia de ARN , Ratas , Transfección
12.
Ann N Y Acad Sci ; 1112: 67-75, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17947587

RESUMEN

beta-thymosins are acknowledged G-actin sequesterers. However, in the recent years, the conserved beta-thymosins/WH2 actin-binding module, has been identified in a large number of proteins that all interact with actin and play diverse functions in cell motility. The functional evolution of the WH2 domain has been approached by a combination of structural and biochemical methods, using thymosin beta4 (Tbeta4) and Ciboulot, a 3 beta-thymosin repeat protein from Drosophila as models. Ciboulot binds actin like Tbeta4 but promotes actin assembly like profilin. The first repeat of Ciboulot (D1) has the profilin function of the whole protein. The crystal structure of Ciboulot-actin shows that the major interaction with G-actin lies in the N-terminal amphipathic helix of D1. By point mutagenesis the sequestering activity of Tbeta4 can be changed into a profilin activity. ((1)H, (15)N)-NMR studies show that the functional switch from inhibition to promotion of actin assembly is linked to a change in the dynamics of interaction of the central and C-terminal regions of the WH2 domain with subdomains 1 and 2 of G-actin. Further systematic mutagenesis studies have been performed by engineering a series of chimeras of Ciboulot and Tbeta4. Proteins displaying either profilin function or enhanced sequestering activity compared to Tbeta4 have been characterized. The results provide insight into the structural basis for the regulation of the multiple functions of the WH2 domain.


Asunto(s)
Actinas/metabolismo , Timosina/fisiología , Actinas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Endotelio Vascular/fisiología , Epidermis/fisiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Timosina/química
13.
J Cell Biol ; 175(6): 947-55, 2006 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-17178911

RESUMEN

Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s(-1), respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Capping de la Actina/genética , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Animales , Línea Celular , Cofilina 1/metabolismo , Proteínas del Citoesqueleto , Citoesqueleto/metabolismo , Dimerización , Fibroblastos/citología , Fibroblastos/metabolismo , Cinética , Quinasas Lim , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Seudópodos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
14.
Nat Cell Biol ; 8(12): 1337-47, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17115031

RESUMEN

Actin-crosslinking proteins organize actin into highly dynamic and architecturally diverse subcellular scaffolds that orchestrate a variety of mechanical processes, including lamellipodial and filopodial protrusions in motile cells. How signalling pathways control and coordinate the activity of these crosslinkers is poorly defined. IRSp53, a multi-domain protein that can associate with the Rho-GTPases Rac and Cdc42, participates in these processes mainly through its amino-terminal IMD (IRSp53 and MIM domain). The isolated IMD has actin-bundling activity in vitro and is sufficient to induce filopodia in vivo. However, the manner of regulation of this activity in the full-length protein remains largely unknown. Eps8 is involved in actin dynamics through its actin barbed-ends capping activity and its ability to modulate Rac activity. Moreover, Eps8 binds to IRSp53. Here, we describe a novel actin crosslinking activity of Eps8. Additionally, Eps8 activates and synergizes with IRSp53 in mediating actin bundling in vitro, enhancing IRSp53-dependent membrane extensions in vivo. Cdc42 binds to and controls the cellular distribution of the IRSp53-Eps8 complex, supporting the existence of a Cdc42-IRSp53-Eps8 signalling pathway. Consistently, Cdc42-induced filopodia are inhibited following individual removal of either IRSp53 or Eps8. Collectively, these results support a model whereby the synergic bundling activity of the IRSp53-Eps8 complex, regulated by Cdc42, contributes to the generation of actin bundles, thus promoting filopodial protrusions.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Forma de la Célula , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Unión Proteica , Transporte de Proteínas , Seudópodos/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
15.
Nat Cell Biol ; 7(10): 969-76, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16155590

RESUMEN

Neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE are members of a family of proteins that use the Arp2/3 complex to stimulate actin assembly in actin-based motile processes. By entering into distinct macromolecular complexes, they act as convergent nodes of different signalling pathways. The role of WAVE in generating lamellipodial protrusion during cell migration is well established. Conversely, the precise cellular functions of N-WASP have remained elusive. Here, we report that Abi1, an essential component of the WAVE protein complex, also has a critical role in regulating N-WASP-dependent function. Consistently, Abi1 binds to N-WASP with nanomolar affinity and, cooperating with Cdc42, potently induces N-WASP activity in vitro. Molecular genetic approaches demonstrate that Abi1 and WAVE, but not N-WASP, are essential for Rac-dependent membrane protrusion and macropinocytosis. Conversely, Abi1 and N-WASP, but not WAVE, regulate actin-based vesicular transport, epidermal growth factor receptor (EGFR) endocytosis, and EGFR and transferrin receptor (TfR) cell-surface distribution. Thus, Abi1 is a dual regulator of WAVE and N-WASP activities in specific processes that are dependent on actin dynamics.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Membrana Celular/metabolismo , Proteínas del Citoesqueleto , Receptores ErbB/metabolismo , Células HeLa , Humanos , Receptores de Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/fisiología , Proteína de Unión al GTP cdc42/metabolismo
16.
Curr Protoc Cell Biol ; Chapter 13: 13.6.1-13.6.23, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18228461

RESUMEN

A very large, ever-increasing repertoire of actin-binding proteins regulates the assembly dynamics and the spatial organization of actin filaments, thus orchestrating the motile behavior of the cell. The authors describe a series of biochemical functional assays that allow one to characterize the function of a putative actin-binding protein in actin filament dynamics. These tests allow the characterization of three types of actin-binding proteins: G-actin-sequestering proteins, profilin-like proteins, and barbed-end capping proteins. Biochemical tests include the use of sedimentation of actin filaments, polymerization assays at the barbed or pointed end of actin filaments derived from fluorescently labeled actin, thermodynamic measurements of actin assembly at steady state and during turnover of actin filaments, measurements of nucleotide exchange on G-actin, and the use of the intrinsic or extrinsic fluorescence of actin to measure direct binding of different protein ligands to G-actin.


Asunto(s)
Proteínas de Capping de la Actina/análisis , Actinas/análisis , Bioquímica/métodos , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/aislamiento & purificación , Profilinas/análisis , Citoesqueleto de Actina/inmunología , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Movimiento Celular , Técnica del Anticuerpo Fluorescente/métodos , Fraccionamiento de Campo-Flujo/instrumentación , Fraccionamiento de Campo-Flujo/métodos , Humanos , Proteínas de Microfilamentos/clasificación , Ensayo de Unión Radioligante/instrumentación , Ensayo de Unión Radioligante/métodos
17.
Cell ; 117(5): 611-23, 2004 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-15163409

RESUMEN

The widespread beta-thymosin/WH2 actin binding domain has versatile regulatory properties in actin dynamics and motility. beta-thymosins (isolated WH2 domain) maintain monomeric actin in a "sequestered" nonpolymerizable form. In contrast, when repeated in tandem or inserted in modular proteins, the beta-thymosin/WH2 domain promotes actin assembly at filament barbed ends, like profilin. The structural basis for these opposite functions is addressed using ciboulot, a three beta-thymosin repeat protein. Only the first repeat binds actin and possesses the function of ciboulot. The region that shows the strongest interaction with actin is an amphipathic N-terminal alpha helix, present in all beta-thymosin/WH2 domains, which recognizes the ATP bound actin structure and uses the shear motion of actin linked to ATP hydrolysis to control polymerization. Crystallographic ((1)H, (15)N), NMR, and mutagenetic data reveal that the weaker interaction of the C-terminal region of beta-thymosin/WH2 domain with actin accounts for the switch in function from inhibition to promotion of actin assembly.


Asunto(s)
Actinas/biosíntesis , Proteínas de Microfilamentos/metabolismo , Timosina/metabolismo , Actinas/química , Animales , Cristalografía por Rayos X , Drosophila/química , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila , Espectroscopía de Resonancia Magnética , Proteínas de Microfilamentos/química , Mutación , Proteínas del Tejido Nervioso , Estructura Terciaria de Proteína , Timosina/genética
18.
J Biol Chem ; 279(22): 23637-45, 2004 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-15039431

RESUMEN

Thymosin beta4 is a major actin-sequestering protein, yet the structural basis for its biological function is still unknown. This study provides insight regarding the way this 43-amino acid peptide, mostly unstructured in solution, binds to monomeric actin and prevents its assembly in filaments. We show here that the whole backbone of thymosin beta4 is highly affected upon binding to G-actin. The assignment of all amide protons and nitrogens of thymosin in the bound state, obtained using a combination of NMR experiments and selective labelings, shows that thymosin folds completely upon binding and displays a central extended region flanked by two N- and C-terminal helices. The cleavage of actin by subtilisin in the DNase I binding loop does not modify the structure of thymosin beta4 in the complex, showing that the backbone of the peptide is not in close proximity to segment 42-47 of actin. The combination of our NMR results and previously published mutation and cross-link data allows a better characterization of the binding mode of thymosins on G-actin.


Asunto(s)
Actinas/química , Timosina/química , Actinas/metabolismo , Animales , Sitios de Unión , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Pliegue de Proteína
19.
FEBS Lett ; 516(1-3): 75-9, 2002 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-11959107

RESUMEN

The presence in the P'1 position relative to the LysArg doublet of either Phe, Tyr or Trp residues affects only pro-OT/Np(7-15) flexibility. This has a measurable effect on the dynamics of the peptide. Since the same modifications have a major influence on the K(m) and V(max) values of the peptide cleavage, these kinetic parameters should depend on the peptide substrate motions. Therefore, the primary kinetic contribution of substrate cleavage should arise from substrate dynamics rather than from the enzyme.


Asunto(s)
Oxitocina/análogos & derivados , Péptidos/química , Péptidos/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Secuencia de Aminoácidos , Arginina Vasopresina/química , Arginina Vasopresina/metabolismo , Sitios de Unión , Dicroismo Circular , Técnicas In Vitro , Cinética , Neurofisinas/química , Neurofisinas/metabolismo , Oxitocina/química , Oxitocina/metabolismo , Procesamiento Proteico-Postraduccional , Espectrometría de Fluorescencia
20.
J Biol Chem ; 277(17): 14786-92, 2002 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-11856744

RESUMEN

Actobindin is an actin-binding protein from amoeba, which consists of two beta-thymosin repeats and has been shown to inhibit actin polymerization by sequestering G-actin and by stabilizing actin dimers. Here we show that actobindin has the same biochemical properties as the Drosophila or Caenorhabditis elegans homologous protein that consists of three beta-thymosin repeats. These proteins define a new family of actin-binding proteins. They bind G-actin in a 1:1 complex with thermodynamic and kinetic parameters similar to beta-thymosins. Like beta-thymosins, they slow down nucleotide exchange on G-actin and make a ternary complex with G-actin and Latrunculin A. On the other hand, they behave as functional homologs of profilin because their complex with MgATP-G-actin, unlike beta-thymosin-actin, participates in filament barbed end growth, like profilin-actin complex. Therefore these proteins play an active role in actin-based motility processes. In addition, proteins of the actobindin family interact with the pointed end of actin filaments and inhibit pointed end growth, maybe via the interaction of the beta-thymosin repeats with two terminal subunits.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Timosina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila , Cinética , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso , Proteínas Protozoarias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...