Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Geophys Res Atmos ; 126(10)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34123691

RESUMEN

The U.S. EPA is leveraging recent advances in meteorological modeling to construct an air quality modeling system to allow consistency from global to local scales. The Model for Prediction Across Scales-Atmosphere (MPAS-A or MPAS) has been developed by the National Center for Atmospheric Research (NCAR) as a global complement to the Weather Research and Forecasting model (WRF). Patterned after a regional coupled system with WRF, the Community Multiscale Air Quality (CMAQ) modeling system has been coupled within MPAS to explore global-to-local chemical transport modeling. Several options were implemented into MPAS for retrospective applications. Nudging-based data assimilation was added to support continuous simulations of past weather to minimize error growth that exists with a weather forecast configuration. The Pleim-Xiu land-surface model, the Asymmetric Convective Model 2 boundary layer scheme, and the Pleim surface layer scheme were added as the preferred options for retrospective air quality applications with WRF. Annual simulations were conducted using this EPA-enhanced MPAS configuration on two different mesh structures and compared against WRF. MPAS generally compares well with WRF over the conterminous United States. Errors in MPAS surface meteorology are comparable to WRF throughout the year. Precipitation statistics indicate MPAS performs slightly better than WRF. Solar radiation in MPAS is higher than WRF and measurements, suggesting fewer clouds in MPAS than WRF. Upper-air meteorology is well-simulated by MPAS, but errors are slightly higher than WRF. These comparisons lend confidence to use MPAS for retrospective air quality modeling and suggest ways it can be further improved in the future.

2.
J Geophys Res Atmos ; 125(15)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-33425636

RESUMEN

Parameterization of subgrid-scale variability of land cover characterization (LCC) is an active area of research, and can improve model performance compared to the dominant (i.e., most abundant tile) approach. The "Noah" land surface model implementation in the global Model for Predictions Across Scales-Atmosphere (MPAS-A), however, only uses the dominant LCC approach that leads to oversimplification in regions of highly heterogeneous LCC (e.g., urban/suburban settings). Thus, in this work we implement a subgrid tiled approach as an option in MPAS-A, version 6.0, and assess the impacts of tiled LCC on meteorological predictions for two gradually refining meshes (92-25 and 46-12 km) focused on the conterminous U.S for January and July 2016. Compared to the dominant approach, results show that using the tiled LCC leads to pronounced global changes in 2-m temperature (July global average change ~ -0.4 K), 2-m moisture, and 10-m wind speed for the 92-25 km mesh. The tiled LCC reduces mean biases in 2-m temperature (July U.S. average bias reduction ~ factor of 4) and specific humidity in the central and western U.S. for the 92-25 km mesh, improves the agreement of vertical profiles (e.g., temperature, humidity, and wind speed) with observed radiosondes; however, there is increased bias and error for incoming solar radiation at the surface. The inclusion of subgrid LCC has implications for reducing systematic temperature biases found in numerical weather prediction models, particularly those that employ a dominant LCC approach.

3.
Geosci Model Dev ; 11: 2897-2922, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31019658

RESUMEN

The Model for Prediction Across Scales - Atmosphere (MPAS-A) has been modified to allow four-dimensional data assimilation (FDDA) by the nudging of temperature, humidity, and wind toward target values predefined on the MPAS-A computational mesh. The addition of nudging allows MPAS-A to be used as a global-scale meteorological driver for retrospective air quality modeling. The technique of "analysis nudging" developed for the Penn State/National Center for Atmospheric Research (NCAR) Mesoscale Model, and later applied in the Weather Research and Forecasting model, is implemented in MPAS-A with adaptations for its polygonal Voronoi mesh. Reference fields generated from 1°×1° National Centers for Environmental Prediction (NCEP) FNL (Final) Operational Global Analysis data were used to constrain MPAS-A simulations on a 92-25km variable-resolution mesh with refinement centered over the contiguous United States. Test simulations were conducted for January and July 2013 with and without FDDA, and compared to reference fields and near-surface meteorological observations. The results demonstrate that MPAS-A with analysis nudging has high fidelity to the reference data while still maintaining conservation of mass as in the unmodified model. The results also show that application of FDDA constrains model errors relative to 2m temperature, 2m water vapor mixing ratio, and 10m wind speed such that they continue to be at or below the magnitudes found at the start of each test period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...