Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Tech (Berl) ; 59(4): 283-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24114890

RESUMEN

In this article, we evaluated the electrophysiological performance of a novel, high-complexity silicon probe array. This brain-implantable probe implements a dynamically reconfigurable voltage-recording device, coordinating large numbers of electronically switchable recording sites, referred to as electronic depth control (EDC). Our results show the potential of the EDC devices to record good-quality local field potentials, and single- and multiple-unit activities in cortical regions during pharmacologically induced cortical slow wave activity in an animal model.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Electrodos Implantados , Electroencefalografía/instrumentación , Sistemas Microelectromecánicos/instrumentación , Microelectrodos , Neuronas/fisiología , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Biomed Tech (Berl) ; 59(4): 291-303, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24101367

RESUMEN

Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself. This paper summarizes recent advances in the fabrication and assembly of micromachined silicon probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this process, three general comb-like microprobe designs featuring up to four 8-mm-long shafts, cross sections from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. Furthermore, we discuss the development and application of different probe assemblies for acute, semichronic, and chronic applications, including comb and array assemblies, floating microprobe arrays, as well as the complete drug delivery system NeuroMedicator for small animal research.


Asunto(s)
Encéfalo/fisiología , Electrodos Implantados , Bombas de Infusión Implantables , Sistemas Microelectromecánicos/instrumentación , Microelectrodos , Microinyecciones/instrumentación , Animales , Encéfalo/cirugía , Diseño de Equipo , Humanos , Miniaturización , Integración de Sistemas
3.
Biomed Tech (Berl) ; 59(4): 315-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24356387

RESUMEN

Neural probes are complex devices consisting of metallic (often Pt based) electrodes, spread over an insolating/dielectric backbone. Their functionality is often limited in time because of the formation of scaring tissues around the implantation tracks. Functionalization of the probes surface can be used to limit the glial scar reaction. This is however challenging, as this treatment has to be equally efficient on all probe surfaces (metallic as well as dielectric) and should not influence the electrodes performances. This paper presents a novel technique to functionalize recording neural probes with hyaluronic acid (HyA), a major component of the extracellular matrix (ECM). HyA and the probe surface are both modified to make the reaction feasible: HyA is chemically functionalized with SS-pyridine groups while the probe surfaces are silanized. The thiol groups thus introduced on the probe surface can then react with the HyA SS-pyridine group, resulting in a covalent bonding of the latter on the former. The electrodes are protected by introducing a pretreatment step, namely an additional hyaluronic acid layer on the platinum electrode, prior to the silanization process, which was found to be effective in reducing electrode impedance under optimized conditions.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Electrodos Implantados , Electrodos , Ácido Hialurónico/química , Microelectrodos , Neuronas/fisiología , Platino (Metal)/química , Adsorción , Animales , Impedancia Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Señal-Ruido , Propiedades de Superficie
4.
PLoS One ; 6(7): e22033, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21765934

RESUMEN

To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems.


Asunto(s)
Conducta Animal/fisiología , Telemetría/instrumentación , Grabación en Video/instrumentación , Tecnología Inalámbrica/instrumentación , Animales , Condicionamiento Operante/fisiología , Ratones , Neostriado/fisiología , Ratas , Tiempo de Reacción/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante
5.
Artículo en Inglés | MEDLINE | ID: mdl-22254797

RESUMEN

This paper reports on a compact, small-scale neural recording system combining state-of-art silicon-based probe arrays with a light-weight 32-channel wireless head stage. The system is equipped with two- and four-shaft, comb-shaped probe arrays connected to highly flexible ribbon cables enabling a reliable and controlled insertion of probe arrays through the intact dura mater into the medial prefrontal cortex and nucleus accumbens of rats. The in vivo experiments applied the 5-choice serial reaction time task (5-CSRTT) using freely behaving rats in order to understand the neural basis of sustained visual attention and impulsivity. The long-term stability of the system allowed local field potential (LFP) activity to be recorded without a significant decrement in signal quality for up to 28 weeks, and similarly, we were able to follow single unit activity for up to 4 weeks.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Electrodos Implantados , Electrodos , Electroencefalografía/instrumentación , Neuronas/fisiología , Telemetría/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Análisis por Micromatrices/instrumentación , Miniaturización , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
J Neurosci Methods ; 189(2): 216-29, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20399227

RESUMEN

Brain implants provide exceptional tools to understand and restore cerebral functions. The utility of these devices depends crucially on their biocompatibility and long term viability. We addressed these points by implanting non-functional, NeuroProbes silicon probes, without or with hyaluronic acid (Hya), dextran (Dex), dexamethasone (DexM), Hya+DexM coating, into rat neocortex. Light and transmission electron microscopy were used to investigate neuronal survival and glial response. The surface of explanted probes was examined in the scanning electron microscope. We show that blood vessel disruption during implantation could induce considerable tissue damage. If, however, probes could be inserted without major bleeding, light microscopical evidence of damage to surrounding neocortical tissue was much reduced. At distances less than 100 microm from the probe track a considerable neuron loss ( approximately 40%) occurred at short survival times, while the neuronal numbers recovered close to control levels at longer survival. Slight gliosis was observed at both short and long term survivals. Electron microscopy showed neuronal cell bodies and synapses close (<10 microm) to the probe track when bleeding could be avoided. The explanted probes were usually partly covered by tissue residue containing cells with different morphology. Our data suggest that NeuroProbes silicon probes are highly biocompatible. If major blood vessel disruption can be avoided, the low neuronal cell loss and gliosis should provide good recording and stimulating results with future functional probes. We found that different bioactive molecule coatings had small differential effects on neural cell numbers and gliosis, with optimal results achieved using the DexM coated probes.


Asunto(s)
Materiales Biocompatibles , Neocórtex , Neuroglía , Neuronas , Prótesis e Implantes , Compuestos de Silicona , Animales , Materiales Biocompatibles/efectos adversos , Vasos Sanguíneos/patología , Supervivencia Celular , Dexametasona/efectos adversos , Dextranos/efectos adversos , Gliosis/etiología , Gliosis/patología , Ácido Hialurónico/efectos adversos , Hemorragias Intracraneales/complicaciones , Hemorragias Intracraneales/patología , Ensayo de Materiales , Neocórtex/citología , Neocórtex/cirugía , Neocórtex/ultraestructura , Neuroglía/patología , Neuroglía/fisiología , Neuroglía/ultraestructura , Neuronas/patología , Neuronas/fisiología , Neuronas/ultraestructura , Prótesis e Implantes/efectos adversos , Ratas , Ratas Wistar , Compuestos de Silicona/efectos adversos , Sinapsis/ultraestructura , Factores de Tiempo
7.
Prog Brain Res ; 175: 297-315, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19660664

RESUMEN

Brain-computer interfaces (BCIs) record neural signals from cortical origin with the objective to control a user interface for communication purposes, a robotic artifact or artificial limb as actuator. One of the key components of such a neuroprosthetic system is the neuro-technical interface itself, the electrode array. In this chapter, different designs and manufacturing techniques will be compared and assessed with respect to scaling and assembling limitations. The overview includes electroencephalogram (EEG) electrodes and epicortical brain-machine interfaces to record local field potentials (LFPs) from the surface of the cortex as well as intracortical needle electrodes that are intended to record single-unit activity. Two exemplary complementary technologies for micromachining of polyimide-based arrays and laser manufacturing of silicone rubber are presented and discussed with respect to spatial resolution, scaling limitations, and system properties. Advanced silicon micromachining technologies have led to highly sophisticated intracortical electrode arrays for fundamental neuroscientific applications. In this chapter, major approaches from the USA and Europe will be introduced and compared concerning complexity, modularity, and reliability. An assessment of the different technological solutions comparable to a strength weaknesses opportunities, and threats (SWOT) analysis might serve as guidance to select the adequate electrode array configuration for each control paradigm and strategy to realize robust, fast, and reliable BCIs.


Asunto(s)
Encéfalo/fisiología , Terapia por Estimulación Eléctrica/instrumentación , Terapia por Estimulación Eléctrica/métodos , Enfermedades del Sistema Nervioso/rehabilitación , Prótesis e Implantes , Interfaz Usuario-Computador , Animales , Electrodos Implantados , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...