Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Sci Rep ; 14(1): 5599, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454107

RESUMEN

Accurately monitoring the extent of freezing in biological tissue is an important requirement for cryoablation, a minimally invasive cancer treatment that induces cell death by freezing tissue with a cryoprobe. During the procedure, monitoring is required to avoid unnecessary harm to the surrounding healthy tissue and to ensure the tumor is properly encapsulated. One commonly used monitoring method is attenuation-based computed tomography (CT), which visualizes the ice ball by utilizing its hypoattenuating properties compared to unfrozen tissue. However, the contrast between frozen and unfrozen tissue remains low. In a proof-of-principle experiment, we show that the contrast between frozen and unfrozen parts of a porcine phantom mimicking breast tissue can be greatly enhanced by acquiring X-ray dark-field images that capture the increasing small-angle scattering caused by the ice crystals formed during the procedure. Our results show that, compared to X-ray attenuation, the frozen region is detected significantly better in dark-field radiographs and CT scans of the phantom. These findings demonstrate that X-ray dark-field imaging could be a potential candidate for improved monitoring of cryoablation procedures.


Asunto(s)
Criocirugía , Hielo , Porcinos , Animales , Congelación , Rayos X , Tomografía Computarizada por Rayos X/métodos , Criocirugía/métodos
2.
IEEE Trans Med Imaging ; 43(1): 28-38, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37342956

RESUMEN

Grating-based X-ray phase-contrast and in particular dark-field radiography are promising new imaging modalities for medical applications. Currently, the potential advantage of dark-field imaging in early-stage diagnosis of pulmonary diseases in humans is being investigated. These studies make use of a comparatively large scanning interferometer at short acquisition times, which comes at the expense of a significantly reduced mechanical stability as compared to tabletop laboratory setups. Vibrations create random fluctuations of the grating alignment, causing artifacts in the resulting images. Here, we describe a novel maximum likelihood method for estimating this motion, thereby preventing these artifacts. It is tailored to scanning setups and does not require any sample-free areas. Unlike any previously described method, it accounts for motion in between as well as during exposures.

3.
IEEE Trans Med Imaging ; 43(4): 1422-1433, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38032773

RESUMEN

X-ray dark-field imaging enables a spatially-resolved visualization of ultra-small-angle X-ray scattering. Using phantom measurements, we demonstrate that a material's effective dark-field signal may be reduced by modification of the visibility spectrum by other dark-field-active objects in the beam. This is the dark-field equivalent of conventional beam-hardening, and is distinct from related, known effects, where the dark-field signal is modified by attenuation or phase shifts. We present a theoretical model for this group of effects and verify it by comparison to the measurements. These findings have significant implications for the interpretation of dark-field signal strength in polychromatic measurements.


Asunto(s)
Modelos Teóricos , Tomografía Computarizada por Rayos X , Rayos X , Tomografía Computarizada por Rayos X/métodos , Radiografía , Fantasmas de Imagen
4.
Invest Radiol ; 58(11): 775-781, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276130

RESUMEN

OBJECTIVES: Dark-field chest radiography (dfCXR) has recently reached clinical trials. Here we compare dfCXR to conventional radiography for the detection and staging of pulmonary emphysema. MATERIALS AND METHODS: Subjects were included after a medically indicated computed tomography (CT) scan, showing either no lung impairments or different stages of emphysema. To establish a ground truth, all CT scans were assessed by 3 radiologists assigning emphysema severity scores based on the Fleischner Society classification scheme.Participants were imaged at a commercial chest radiography device and at a prototype for dfCXR, yielding both attenuation-based and dark-field images. Three radiologists blinded to CT score independently assessed images from both devices for presence and severity of emphysema (no, mild, moderate, severe).Statistical analysis included evaluation of receiver operating characteristic curves and pairwise comparison of adjacent Fleischner groups using an area under the curve (AUC)-based z test with a significance level of 0.05. RESULTS: A total of 88 participants (54 men) with a mean age of 64 ± 12 years were included. Compared with conventional images (AUC = 0.73), readers were better able to identify emphysema with images from the dark-field prototype (AUC = 0.85, P = 0.005). Although ratings of adjacent emphysema severity groups with conventional radiographs differed only for trace and mild emphysema, ratings based on images from the dark-field prototype were different for trace and mild, mild and moderate, and moderate and confluent emphysema. CONCLUSIONS: Dark-field chest radiography is superior to conventional chest radiography for emphysema diagnosis and staging, indicating the technique's potential as a low-dose diagnostic tool for emphysema assessment.


Asunto(s)
Enfisema , Enfisema Pulmonar , Masculino , Humanos , Persona de Mediana Edad , Anciano , Enfisema Pulmonar/diagnóstico por imagen , Radiografía , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos
5.
PLoS One ; 18(4): e0279323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37058505

RESUMEN

BACKGROUND: The differentiation of minimal-fat-or low-fat-angiomyolipomas from other renal lesions is clinically challenging in conventional computed tomography. In this work, we have assessed the potential of grating-based x-ray phase-contrast computed tomography (GBPC-CT) for visualization and quantitative differentiation of minimal-fat angiomyolipomas (mfAMLs) and oncocytomas from renal cell carcinomas (RCCs) on ex vivo renal samples. MATERIALS AND METHODS: Laboratory GBPC-CT was performed at 40 kVp on 28 ex vivo kidney specimens including five angiomyolipomas with three minimal-fat (mfAMLs) and two high-fat (hfAMLs) subtypes as well as three oncocytomas and 20 RCCs with eight clear cell (ccRCCs), seven papillary (pRCCs) and five chromophobe RCC (chrRCC) subtypes. Quantitative values of conventional Hounsfield units (HU) and phase-contrast Hounsfield units (HUp) were determined and histogram analysis was performed on GBPC-CT and grating-based attenuation-contrast computed tomography (GBAC-CT) slices for each specimen. For comparison, the same specimens were imaged at a 3T magnetic resonance imaging (MRI) scanner. RESULTS: We have successfully matched GBPC-CT images with clinical MRI and histology, as GBPC-CT presented with increased soft tissue contrast compared to absorption-based images. GBPC-CT images revealed a qualitative and quantitative difference between mfAML samples (58±4 HUp) and oncocytomas (44±10 HUp, p = 0.057) and RCCs (ccRCCs: 40±12 HUp, p = 0.012; pRCCs: 43±9 HUp, p = 0.017; chrRCCs: 40±7 HUp, p = 0.057) in contrast to corresponding laboratory attenuation-contrast CT and clinical MRI, although not all differences were statistically significant. Due to the heterogeneity and lower signal of oncocytomas, quantitative differentiation of the samples based on HUp or in combination with HUs was not possible. CONCLUSIONS: GBPC-CT allows quantitative differentiation of minimal-fat angiomyolipomas from pRCCs and ccRCCs in contrast to absorption-based imaging and clinical MRI.


Asunto(s)
Adenoma Oxifílico , Angiomiolipoma , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/patología , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Angiomiolipoma/diagnóstico por imagen , Angiomiolipoma/patología , Rayos X , Tomografía Computarizada por Rayos X/métodos , Adenoma Oxifílico/diagnóstico por imagen , Diagnóstico Diferencial , Estudios Retrospectivos
6.
Sci Rep ; 13(1): 6996, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117518

RESUMEN

Phase-contrast computed tomography can visualize soft tissue samples with high contrast. At coherent sources, propagation-based imaging (PBI) techniques are among the most common, as they are easy to implement and produce high-resolution images. Their downside is a low degree of quantitative data due to simplifying assumptions of the sample properties in the reconstruction. These assumptions can be avoided, by using quantitative phase-contrast techniques as an alternative. However, these often compromise spatial resolution and require complicated setups. In order to overcome this limitation, we designed and constructed a new imaging setup using a 2D Talbot array illuminator as a wavefront marker and speckle-based imaging phase-retrieval techniques. We developed a post-processing chain that can compensate for wavefront marker drifts and that improves the overall sensitivity. By comparing two measurements of biomedical samples, we demonstrate that the spatial resolution of our setup is comparable to the one of PBI scans while being able to successfully image a sample that breaks the typical homogeneity assumption used in PBI.


Asunto(s)
Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X , Rayos X , Tomografía Computarizada por Rayos X/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Microscopía de Contraste de Fase
7.
Sci Rep ; 13(1): 767, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641492

RESUMEN

Material-selective analysis of spectral X-ray imaging data requires prior knowledge of the energy dependence of the observed signal. Contrary to conventional X-ray imaging, where the material-specific attenuation coefficient is usually precisely known, the linear diffusion coefficient of the X-ray dark-field contrast does not only depend on the material and its microstructure, but also on the setup geometry and is difficult to access. Here, we present an optimization approach to retrieve the energy dependence of the X-ray dark-field signal quantitatively on the example of closed-cell foams from projection data without the need for additional hardware to a standard grating-based X-ray dark-field imaging setup. A model for the visibility is used to determine the linear diffusion coefficient with a least-squares optimization. The comparison of the results to spectrometer measurements of the linear diffusion coefficient suggests the proposed method to provide a good estimate for the energydependent dark-field signal.

8.
iScience ; 25(12): 105676, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36561886

RESUMEN

Corumbella is a terminal Ediacaran tubular, benthic fossil of debated morphology, composition, and biological affinity. Here, we show that Corumbella had a biomineralized skeleton, with a bilayered construction of imbricated calcareous plates and rings (sclerites) yielding a cataphract organization, that enhanced flexibility. Each sclerite likely possessed a laminar microfabric with consistent crystallographic orientation, within an organic matrix. Original aragonitic mineralogy is supported by relict aragonite and elevated Sr (mean = ca. 11,800 ppm in central parts of sclerites). In sum, the presence of a polarisation axis, sclerites with a laminar microfabric, and a cataphract skeletal organization reminiscent of early Cambrian taxa, are all consistent with, but not necessarily indicative of, a bilaterian affinity. A cataphract skeleton with an inferred complex microstructure confirms the presence of controlled biomineralization in metazoans by the terminal Ediacaran, and offers insights into the evolution of development and ecology at the root of the 'Cambrian radiation'.

9.
Front Immunol ; 13: 947961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524111

RESUMEN

With growing molecular evidence for correlations between spatial arrangement of blood vasculature and fundamental immunological functions, carried out in distinct compartments of the subdivided lymph node, there is an urgent need for three-dimensional models that can link these aspects. We reconstructed such models at a 1.84 µm resolution by the means of X-ray phase-contrast imaging with a 2D Talbot array in a short time without any staining. In addition reconstructions are verified in immunohistochemistry staining as well as in ultrastructural analyses. While conventional illustrations of mammalian lymph nodes depict the hilus as a definite point of blood and lymphatic vessel entry and exit, our method revealed that multiple branches enter and emerge from an area that extends up to one third of the organ's surface. This could be a prerequisite for the drastic and location-dependent remodeling of vascularization, which is necessary for lymph node expansion during inflammation. Contrary to corrosion cast studies we identified B-cell follicles exhibiting a two times denser capillary network than the deep cortical units of the T-cell zone. In addition to our observation of high endothelial venules spatially surrounding the follicles, this suggests a direct connection between morphology and B-cell homing. Our findings will deepen the understanding of functional lymph node composition and lymphocyte migration on a fundamental basis.


Asunto(s)
Ganglios Linfáticos , Vasos Linfáticos , Ratones , Animales , Rayos X , Ganglios Linfáticos/diagnóstico por imagen , Vénulas , Vasos Linfáticos/diagnóstico por imagen , Tomografía , Mamíferos
10.
Commun Med (Lond) ; 2(1): 147, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411311

RESUMEN

BACKGROUND: Currently, alternative medical imaging methods for the assessment of pulmonary involvement in patients infected with COVID-19 are sought that combine a higher sensitivity than conventional (attenuation-based) chest radiography with a lower radiation dose than CT imaging. METHODS: Sixty patients with COVID-19-associated lung changes in a CT scan and 40 subjects without pathologic lung changes visible in the CT scan were included (in total, 100, 59 male, mean age 58 ± 14 years). All patients gave written informed consent. We employed a clinical setup for grating-based dark-field chest radiography, obtaining both a dark-field and a conventional attenuation image in one image acquisition. Attenuation images alone, dark-field images alone, and both displayed simultaneously were assessed for the presence of COVID-19-associated lung changes on a scale from 1 to 6 (1 = surely not, 6 = surely) by four blinded radiologists. Statistical analysis was performed by evaluation of the area under the receiver-operator-characteristics curves (AUC) using Obuchowski's method with a 0.05 level of significance. RESULTS: We show that dark-field imaging has a higher sensitivity for COVID-19-pneumonia than attenuation-based imaging and that the combination of both is superior to one imaging modality alone. Furthermore, a quantitative image analysis shows a significant reduction of dark-field signals for COVID-19-patients. CONCLUSIONS: Dark-field imaging complements and improves conventional radiography for the visualisation and detection of COVID-19-pneumonia.


Computed tomography (CT) imaging uses X-rays to obtain images of the inside of the body. It is used to look at lung damage in patients with COVID-19. However, CT imaging exposes the patient to a considerable amount of radiation. As radiation exposure can lead to the development of cancer, exposure should be minimised. Conventional plain X-ray imaging uses lower amounts of radiation but lacks sensitivity. We used dark-field chest X-ray imaging, which also uses low amounts of radiation, to assess the lungs of patients with COVID-19. Radiologists identified pneumonia in patients more easily from dark-field images than from usual plain X-ray images. We anticipate dark-field X-ray imaging will be useful to follow-up patients suspected of having lung damage.

11.
Artículo en Alemán | MEDLINE | ID: mdl-35790166

RESUMEN

OBJECTIVE: The aim of this study is to evaluate whether X-ray dark-field (DF) radiography is useful for the diagnosis of gout in birds and reptiles and whether this preclinical model could be helpful to establish this non-invasive imaging method in human medicine. MATERIAL AND METHODS: A total of 18 limbs originating from 11 birds (7 different species) and 7 reptiles (4 different species) with and without suspected joint gout were measured using a grating-based X-ray dark-field setup and conventional X-ray examination, respectively. Each image acquisition generated a dark-field and a conventional absorption x-ray image. The results of the individual scans were compared with the results of a pathological examination and arthrocentesis. RESULTS: In 5 of the birds and 4 of the reptiles examined, gout was detected by pathologic examination. In each group, uric acid crystals were found in the joints of 3 animals by means of arthrocentesis. The uric acid crystals were detectable in 2 bird and 2 reptile limbs in the dark-field image. CONCLUSION: The study demonstrated that the urate crystals evoke a clearly visible dark field signal, whereas this was not the case in the conventional radiographs. CLINICAL RELEVANCE: The results obtained show that uric acid crystal detection using less invasive imaging methods in an animal model with birds and reptiles may expand gout diagnostics not only in veterinary medicine but also in human medicine and possibly replace arthrocentesis if a DF signal is detectable. Preclinical scanners which use X-ray dark-field and phase-contrast radiography already exist for hands and mammography.


Asunto(s)
Animales Exóticos , Gota , Animales , Gota/diagnóstico por imagen , Gota/veterinaria , Radiografía , Ácido Úrico , Rayos X
12.
Adv Sci (Weinh) ; 9(24): e2201723, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35748171

RESUMEN

Although X-ray contrast agents offer specific characteristics in terms of targeting and attenuation, their accumulation in the tissue on a cellular level is usually not known and difficult to access, as it requires high resolution and sensitivity. Here, quantitative near-field ptychographic X-ray computed tomography is demonstrated to assess the location of X-ray stains at a resolution sufficient to identify intracellular structures by means of a basis material decomposition. On the example of two different X-ray stains, the nonspecific iodine potassium iodide, and eosin Y, which mostly interacts with proteins and peptides in the cell cytoplasm, the distribution of the stains within the cells in murine kidney samples is assessed and compared to unstained samples with similar structural features. Quantitative nanoscopic stain concentrations are in good agreement with dual-energy micro computed tomography measurements, the state-of-the-art modality for material-selective imaging. The presented approach can be applied to a variety of X-ray stains advancing the development of X-ray contrast agents.


Asunto(s)
Colorantes , Medios de Contraste , Animales , Ratones , Coloración y Etiquetado , Microtomografía por Rayos X/métodos , Rayos X
14.
Eur Radiol Exp ; 6(1): 9, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229244

RESUMEN

BACKGROUND: Spirometry and conventional chest x-ray have limitations in investigating early emphysema, while computed tomography, the reference imaging method in this context, is not part of routine patient care due to its higher radiation dose. In this work, we investigated a novel low-dose imaging modality, dark-field chest x-ray, for the evaluation of emphysema in patients with alpha1-antitrypsin deficiency. METHODS: By exploiting wave properties of x-rays for contrast formation, dark-field chest x-ray visualises the structural integrity of the alveoli, represented by a high signal over the lungs in the dark-field image. We investigated four patients with alpha1-antitrypsin deficiency with a novel dark-field x-ray prototype and simultaneous conventional chest x-ray. The extent of pulmonary function impairment was assessed by pulmonary function measurement and regional emphysema distribution was compared with CT in one patient. RESULTS: We show that dark-field chest x-ray visualises the extent of pulmonary emphysema displaying severity and regional differences. Areas with low dark-field signal correlate with emphysematous changes detected by computed tomography using a threshold of -950 Hounsfield units. The airway parameters obtained by whole-body plethysmography and single breath diffusing capacity of the lungs for carbon monoxide demonstrated typical changes of advanced emphysema. CONCLUSIONS: Dark-field chest x-ray directly visualised the severity and regional distribution of pulmonary emphysema compared to conventional chest x-ray in patients with alpha1-antitrypsin deficiency. Due to the ultra-low radiation dose in comparison to computed tomography, dark-field chest x-ray could be beneficial for long-term follow-up in these patients.


Asunto(s)
Enfisema , Enfisema Pulmonar , Enfisema/diagnóstico por imagen , Humanos , Enfisema Pulmonar/diagnóstico por imagen , Radiografía , Tomografía Computarizada por Rayos X , Rayos X
16.
IEEE Trans Med Imaging ; 41(4): 895-902, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34748485

RESUMEN

Dark-field radiography of the human chest is a promising novel imaging technique with the potential of becoming a valuable tool for the early diagnosis of chronic obstructive pulmonary disease and other diseases of the lung. The large field-of-view needed for clinical purposes could recently be achieved by a scanning system. While this approach overcomes the limited availability of large area grating structures, it also results in a prolonged image acquisition time, leading to concomitant motion artifacts caused by intrathoracic movements (e.g. the heartbeat). Here we report on a motion artifact reduction algorithm for a dark-field X-ray scanning system, and its successful evaluation in a simulated chest phantom and human in vivo chest X-ray dark-field data. By partitioning the acquired data into virtual scans with shortened acquisition time, such motion artifacts may be reduced or even fully avoided. Our results demonstrate that motion artifacts (e.g. induced by cardiac motion or diaphragmatic movements) can effectively be reduced, thus significantly improving the image quality of dark-field chest radiographs.


Asunto(s)
Algoritmos , Artefactos , Humanos , Movimiento (Física) , Fantasmas de Imagen , Radiografía
17.
Sci Rep ; 11(1): 23504, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873265

RESUMEN

X-ray dark-field imaging is a widely researched imaging technique, with many studies on samples of very different dimensions and at very different resolutions. However, retrieval of three-dimensional (3D) information for human thorax sized objects has not yet been demonstrated. We present a method, similar to classic tomography and tomosynthesis, to obtain 3D information in X-ray dark-field imaging. Here, the sample is moved through the divergent beam of a Talbot-Lau interferometer. Projections of features at different distances from the source seemingly move with different velocities over the detector, due to the cone beam geometry. The reconstruction of different focal planes exploits this effect. We imaged a chest phantom and were able to locate different features in the sample (e.g. the ribs, and two sample vials filled with water and air and placed in the phantom) to corresponding focal planes. Furthermore, we found that image quality and detectability of features is sufficient for image reconstruction with a dose of 68 µSv at an effective pixel size of [Formula: see text]. Therefore, we successfully demonstrated that the presented method is able to retrieve 3D information in X-ray dark-field imaging.


Asunto(s)
Imagenología Tridimensional/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Interferometría/métodos , Fantasmas de Imagen , Tórax/diagnóstico por imagen , Rayos X
18.
Phys Imaging Radiat Oncol ; 20: 11-16, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34611553

RESUMEN

BACKGROUND AND PURPOSE: Radiotherapy of thoracic tumours can lead to side effects in the lung, which may benefit from early diagnosis. We investigated the potential of X-ray dark-field computed tomography by a proof-of-principle murine study in a clinically relevant radiotherapeutic setting aiming at the detection of radiation-induced lung damage. MATERIAL AND METHODS: Six mice were irradiated with 20 Gy to the entire right lung. Together with five unirradiated control mice, they were imaged using computed tomography with absorption and dark-field contrast before and 16 weeks post irradiation. Mean pixel values for the right and left lung were calculated for both contrasts, and the right-to-left-ratio R of these means was compared. Radiologists also assessed the tomograms acquired 16 weeks post irradiation. Sensitivity, specificity, inter- and intra-reader accuracy were evaluated. RESULTS: In absorption contrast the group-average of R showed no increase in the control group and increased by 7% (p = 0.005) in the irradiated group. In dark-field contrast, it increased by 2% in the control group and by 14% (p = 0.005) in the irradiated group. Specificity was 100% for both contrasts but sensitivity was almost four times higher using dark-field tomography. Two cases were missed by absorption tomography but were detected by dark-field tomography. CONCLUSIONS: The applicability of X-ray dark-field computed tomography for the detection of radiation-induced lung damage was demonstrated in a pre-clinical mouse model. The presented results illustrate the differences between dark-field and absorption contrast and show that dark-field tomography could be advantageous in future clinical settings.

19.
J Imaging ; 7(10)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34677295

RESUMEN

Grating-based phase-contrast and dark-field imaging systems create intensity modulations that are usually modeled with sinusoidal functions to extract transmission, differential-phase shift, and scatter information. Under certain system-related conditions, the modulations become non-sinusoidal and cause artifacts in conventional processing. To account for that, we introduce a piecewise-defined periodic polynomial function that resembles the physical signal formation process, modeling convolutions of binary periodic functions. Additionally, we extend the model with an iterative expectation-maximization algorithm that can account for imprecise grating positions during phase-stepping. We show that this approach can process a higher variety of simulated and experimentally acquired data, avoiding most artifacts.

20.
Lancet Digit Health ; 3(11): e733-e744, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711378

RESUMEN

BACKGROUND: Although advanced medical imaging technologies give detailed diagnostic information, a low-dose, fast, and inexpensive option for early detection of respiratory diseases and follow-ups is still lacking. The novel method of x-ray dark-field chest imaging might fill this gap but has not yet been studied in living humans. Enabling the assessment of microstructural changes in lung parenchyma, this technique presents a more sensitive alternative to conventional chest x-rays, and yet requires only a fraction of the dose applied in CT. We studied the application of this technique to assess pulmonary emphysema in patients with chronic obstructive pulmonary disease (COPD). METHODS: In this diagnostic accuracy study, we designed and built a novel dark-field chest x-ray system (Technical University of Munich, Munich, Germany)-which is also capable of simultaneously acquiring a conventional thorax radiograph (7 s, 0·035 mSv effective dose). Patients who had undergone a medically indicated chest CT were recruited from the department of Radiology and Pneumology of our site (Klinikum rechts der Isar, Technical University of Munich, Munich, Germany). Patients with pulmonary pathologies, or conditions other than COPD, that might influence lung parenchyma were excluded. For patients with different disease stages of pulmonary emphysema, x-ray dark-field images and CT images were acquired and visually assessed by five readers. Pulmonary function tests (spirometry and body plethysmography) were performed for every patient and for a subgroup of patients the measurement of diffusion capacity was performed. Individual patient datasets were statistically evaluated using correlation testing, rank-based analysis of variance, and pair-wise post-hoc comparison. FINDINGS: Between October, 2018 and December, 2019 we enrolled 77 patients. Compared with CT-based parameters (quantitative emphysema ρ=-0·27, p=0·089 and visual emphysema ρ=-0·45, p=0·0028), the dark-field signal (ρ=0·62, p<0·0001) yields a stronger correlation with lung diffusion capacity in the evaluated cohort. Emphysema assessment based on dark-field chest x-ray features yields consistent conclusions with findings from visual CT image interpretation and shows improved diagnostic performance than conventional clinical tests characterising emphysema. Pair-wise comparison of corresponding test parameters between adjacent visual emphysema severity groups (CT-based, reference standard) showed higher effect sizes. The mean effect size over the group comparisons (absent-trace, trace-mild, mild-moderate, and moderate-confluent or advanced destructive visual emphysema grades) for the COPD assessment test score is 0·21, for forced expiratory volume in 1 s (FEV1)/functional vital capacity is 0·25, for FEV1% of predicted is 0·23, for residual volume % of predicted is 0·24, for CT emphysema index is 0·35, for dark-field signal homogeneity within lungs is 0·38, for dark-field signal texture within lungs is 0·38, and for dark-field-based emphysema severity is 0·42. INTERPRETATION: X-ray dark-field chest imaging allows the diagnosis of pulmonary emphysema in patients with COPD because this technique provides relevant information representing the structural condition of lung parenchyma. This technique might offer a low radiation dose alternative to CT in COPD and potentially other lung disorders. FUNDING: European Research Council, Deutsche Forschungsgemeinschaft, Royal Philips, and Karlsruhe Nano Micro Facility.


Asunto(s)
Enfisema/diagnóstico , Pulmón/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico , Radiografía Torácica/métodos , Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Enfisema/diagnóstico por imagen , Femenino , Volumen Espiratorio Forzado , Alemania , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/diagnóstico por imagen , Radiografía , Índice de Severidad de la Enfermedad , Fumar , Tórax/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...