Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(14): 3881-3892, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37035694

RESUMEN

Apoptin is a small viral protein capable of inducing cell death selectively in cancer cells. Despite its potential as an anticancer agent, relatively little is known about its mechanism of toxicity and cancer-selectivity. Previous experiments suggest that cancer-selective phosphorylation modulates apoptin toxicity, although a lack of chemical tools has hampered the dissection of underlying mechanisms. Here, we describe structure-function studies with site-specifically phosphorylated apoptin (apoptin-T108ph) in living cells which revealed that Thr108 phosphorylation is the selectivity switch for apoptin toxicity. Mechanistic investigations link T108ph to actin binding, cytoskeletal disruption and downstream inhibition of anoikis-resistance as well as cancer cell invasion. These results establish apoptin as a protein pro-drug, selectively activated in cancer cells by phosphorylation, which disrupts the cytoskeleton and promotes cell death. We anticipate that this mechanism provides a framework for the design of next generation anticancer proteins with enhanced selectivity and potency.

2.
Vaccines (Basel) ; 10(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36366408

RESUMEN

Background: Current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are administered systemically and typically result in poor immunogenicity at the mucosa. As a result, vaccination is unable to reduce viral shedding and transmission, ultimately failing to prevent infection. One possible solution is that of boosting a systemic vaccine via the nasal route resulting in mucosal immunity. Here, we have evaluated the potential of bacterial spores as an intranasal boost. Method: Spores engineered to express SARS-CoV-2 antigens were administered as an intranasal boost following a prime with either recombinant Spike protein or the Oxford AZD1222 vaccine. Results: In mice, intranasal boosting following a prime of either Spike or vaccine produced antigen-specific sIgA at the mucosa together with the increased production of Th1 and Th2 cytokines. In a hamster model of infection, the clinical and virological outcomes resulting from a SARS-CoV-2 challenge were ameliorated. Wuhan-specific sIgA were shown to cross-react with Omicron antigens, suggesting that this strategy might offer protection against SARS-CoV-2 variants of concern. Conclusions: Despite being a genetically modified organism, the spore vaccine platform is attractive since it offers biological containment, the rapid and cost-efficient production of vaccines together with heat stability. As such, employed in a heterologous systemic prime-mucosal boost regimen, spore vaccines might have utility for current and future emerging diseases.

3.
Biomedicines ; 10(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35625667

RESUMEN

Clostridioides difficile is an environmentally acquired, anaerobic, spore-forming bacterium which ordinarily causes disease following antibiotic-mediated dysbiosis of the intestinal microbiota. Although much is understood regarding the life cycle of C. difficile, the fate of C. difficile spores upon ingestion remains unclear, and the underlying factors that predispose an individual to colonization and subsequent development of C. difficile infection (CDI) are not fully understood. Here, we show that Bacillus, a ubiquitous and environmentally acquired, spore-forming bacterium is associated with colonization resistance to C. difficile. Using animal models, we first provide evidence that animals housed under conditions that mimic reduced environmental exposure have an increased susceptibility to CDI, correlating with a loss in Bacillus. Lipopeptide micelles (~10 nm) produced by some Bacilli isolated from the gastro-intestinal (GI)-tract and shown to have potent inhibitory activity to C. difficile have recently been reported. We show here that these micelles, that we refer to as heterogenous lipopeptide lytic micelles (HELMs), act synergistically with components present in the small intestine to augment inhibitory activity against C. difficile. Finally, we show that provision of HELM-producing Bacillus to microbiota-depleted animals suppresses C. difficile colonization thereby demonstrating the significant role played by Bacillus in colonization resistance. In the wider context, our study further demonstrates the importance of environmental microbes on susceptibility to pathogen colonization.

4.
Pharmaceutics ; 13(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34452257

RESUMEN

Members of the Bacillus genus, particularly the "Bacillus subtilis group", are known to produce amphipathic lipopeptides with biosurfactant activity. This includes the surfactins, fengycins and iturins that have been associated with antibacterial, antifungal, and anti-viral properties. We have screened a large collection of Bacillus, isolated from human, animal, estuarine water and soil samples and found that the most potent lipopeptide producers are members of the species Bacillus velezensis. B. velezensis lipopeptides exhibited anti-bacterial activity which was localised on the surface of both vegetative cells and spores. Interestingly, lipopeptide micelles (6-10 nm diameter) were detectable in strains exhibiting the highest levels of activity. Micelles were stable (heat and gastric stable) and shown to entrap other antimicrobials produced by the host bacterium (exampled here was the dipeptide antibiotic chlorotetaine). Commercially acquired lipopeptides did not exhibit similar levels of inhibitory activity and we suspect that micelle formation may relate to the particular isomeric forms produced by individual bacteria. Using naturally produced micelle formulations we demonstrated that they could entrap antimicrobial compounds (e.g., clindamycin, vancomycin and resveratrol). Micellar incorporation of antibiotics increased activity. Bacillus is a prolific producer of antimicrobials, and this phenomenon could be exploited naturally to augment antimicrobial activity. From an applied perspective, the ability to readily produce Bacillus micelles and formulate with drugs enables a possible strategy for enhanced drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...