Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 12(3): 456-469, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30828367

RESUMEN

While the goal of supplementation programs is to provide positive, population-level effects for species of conservation concern, these programs can also present an inherent fitness risk when captive-born individuals are fully integrated into the natural population. In order to evaluate the long-term effects of a supplementation program and estimate the demographic and phenotypic factors influencing the fitness of a threatened population of Chinook Salmon (Oncorhynchus tshawytscha), we genotyped tissue samples spanning a 19-year period (1998-2016) to generate pedigrees from adult fish returning to Johnson Creek, Idaho, USA. We expanded upon previous estimates of relative reproductive success (RRS) to include grandparentage analyses and used generalized linear models to determine whether origin (hatchery or natural) or phenotypic traits (timing of arrival to spawning grounds, body length, and age) significantly predicted reproductive success (RS) across multiple years. Our results provide evidence that this supplementation program with 100% natural-origin broodstock provided a long-term demographic boost to the population (mean of 4.56 times in the first generation and mean of 2.52 times in the second generation). Overall, when spawning in nature, hatchery-origin fish demonstrated a trend toward lower RS compared to natural-origin fish (p < 0.05). However, when hatchery-origin fish successfully spawned with natural-origin fish, they had similar RS compared to natural by natural crosses (first-generation mean hatchery by natural cross RRS = 1.11 females, 1.13 males; second-generation mean hatchery by natural cross RRS = 1.03 females, 1.08 males). While origin, return year, and body length were significant predictors of fitness for both males and females (p < 0.05), return day was significant for males but not females (p > 0.05). These results indicate that supplementation programs that reduce the potential for genetic adaptation to captivity can be effective at increasing population abundance while limiting long-term fitness effects on wild populations.

2.
Vaccine ; 31(25): 2738-43, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23583892

RESUMEN

Formaldehyde is a one-carbon, highly water-soluble aldehyde that is used in certain vaccines to inactivate viruses and to detoxify bacterial toxins. As part of the manufacturing process, some residual formaldehyde can remain behind in vaccines at levels less than or equal to 0.02%. Environmental and occupational exposure, principally by inhalation, is a continuing risk assessment focus for formaldehyde. However, exposure to formaldehyde via vaccine administration is qualitatively and quantitatively different from environmental or occupational settings and calls for a different perspective and approach to risk assessment. As part of a rigorous and ongoing process of evaluating the safety of biological products throughout their lifecycle at the FDA, we performed an assessment of formaldehyde in infant vaccines, in which estimates of the concentrations of formaldehyde in blood and total body water following exposure to formaldehyde-containing vaccines at a single medical visit were compared with endogenous background levels of formaldehyde in a model 2-month-old infant. Formaldehyde levels were estimated using a physiologically-based pharmacokinetic (PBPK) model of formaldehyde disposition following intramuscular (IM) injection. Model results indicated that following a single dose of 200 µg, formaldehyde is essentially completely removed from the site of injection within 30 min. Assuming metabolism at the site of injection only, peak concentrations of formaldehyde in blood/total body water were estimated to be 22 µg/L, which is equivalent to a body burden of 66 µg or <1% of the endogenous level of formaldehyde. Predicted levels in the lymphatics were even lower. Assuming no adverse effects from endogenous formaldehyde, which exists in blood and extravascular water at background concentrations of 0.1 mM, we conclude that residual, exogenously applied formaldehyde continues to be safe following incidental exposures from infant vaccines.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacocinética , Formaldehído/farmacocinética , Modelos Biológicos , Reactivos de Enlaces Cruzados/administración & dosificación , Reactivos de Enlaces Cruzados/efectos adversos , Vacuna contra Difteria, Tétanos y Tos Ferina/química , Formaldehído/administración & dosificación , Formaldehído/efectos adversos , Vacunas contra Haemophilus/química , Vacunas contra Hepatitis B/química , Humanos , Lactante , Inyecciones Intramusculares , Vacuna Antipolio de Virus Inactivados/química , Medición de Riesgo
3.
Mol Ecol ; 21(21): 5236-50, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23025818

RESUMEN

While supportive breeding programmes strive to minimize negative genetic impacts to populations, case studies have found evidence for reduced fitness of artificially produced individuals when they reproduce in the wild. Pedigrees of two complete generations were tracked with molecular markers to investigate differences in reproductive success (RS) of wild and hatchery-reared Chinook salmon spawning in the natural environment to address questions regarding the demographic and genetic impacts of supplementation to a natural population. Results show a demographic boost to the population from supplementation. On average, fish taken into the hatchery produced 4.7 times more adult offspring, and 1.3 times more adult grand-offspring than naturally reproducing fish. Of the wild and hatchery fish that successfully reproduced, we found no significant differences in RS between any comparisons, but hatchery-reared males typically had lower RS values than wild males. Mean relative reproductive success (RRS) for hatchery F(1) females and males was 1.11 (P = 0.84) and 0.89 (P = 0.56), respectively. RRS of hatchery-reared fish (H) that mated in the wild with either hatchery or wild-origin (W) fish was generally equivalent to W × W matings. Mean RRS of H × W and H × H matings was 1.07 (P = 0.92) and 0.94 (P = 0.95), respectively. We conclude that fish chosen for hatchery rearing did not have a detectable negative impact on the fitness of wild fish by mating with them for a single generation. Results suggest that supplementation following similar management practices (e.g. 100% local, wild-origin brood stock) can successfully boost population size with minimal impacts on the fitness of salmon in the wild.


Asunto(s)
Cruzamiento , Aptitud Genética , Salmón/fisiología , Animales , Conservación de los Recursos Naturales , Femenino , Explotaciones Pesqueras , Idaho , Masculino , Linaje , Densidad de Población , Reproducción , Salmón/genética
4.
Mol Ecol Resour ; 12(6): 1114-23, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22958648

RESUMEN

Genotyping errors are present in almost all genetic data and can affect biological conclusions of a study, particularly for studies based on individual identification and parentage. Many statistical approaches can incorporate genotyping errors, but usually need accurate estimates of error rates. Here, we used a new microsatellite data set developed for brown rockfish (Sebastes auriculatus) to estimate genotyping error using three approaches: (i) repeat genotyping 5% of samples, (ii) comparing unintentionally recaptured individuals and (iii) Mendelian inheritance error checking for known parent-offspring pairs. In each data set, we quantified genotyping error rate per allele due to allele drop-out and false alleles. Genotyping error rate per locus revealed an average overall genotyping error rate by direct count of 0.3%, 1.5% and 1.7% (0.002, 0.007 and 0.008 per allele error rate) from replicate genotypes, known parent-offspring pairs and unintentionally recaptured individuals, respectively. By direct-count error estimates, the recapture and known parent-offspring data sets revealed an error rate four times greater than estimated using repeat genotypes. There was no evidence of correlation between error rates and locus variability for all three data sets, and errors appeared to occur randomly over loci in the repeat genotypes, but not in recaptures and parent-offspring comparisons. Furthermore, there was no correlation in locus-specific error rates between any two of the three data sets. Our data suggest that repeat genotyping may underestimate true error rates and may not estimate locus-specific error rates accurately. We therefore suggest using methods for error estimation that correspond to the overall aim of the study (e.g. known parent-offspring comparisons in parentage studies).


Asunto(s)
Cordados/clasificación , Cordados/genética , Errores Diagnósticos , Variación Genética , Repeticiones de Microsatélite , Biología Molecular/métodos , Animales , Errores Diagnósticos/estadística & datos numéricos , Genotipo , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
5.
Vaccine ; 29(51): 9538-43, 2011 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-22001122

RESUMEN

Aluminum is a ubiquitous element that is released naturally into the environment via volcanic activity and the breakdown of rocks on the earth's surface. Exposure of the general population to aluminum occurs primarily through the consumption of food, antacids, and buffered analgesics. Exposure to aluminum in the general population can also occur through vaccination, since vaccines often contain aluminum salts (frequently aluminum hydroxide or aluminum phosphate) as adjuvants. Because concerns have been expressed by the public that aluminum in vaccines may pose a risk to infants, we developed an up-to-date analysis of the safety of aluminum adjuvants. Keith et al. [1] previously analyzed the pharmacokinetics of aluminum for infant dietary and vaccine exposures and compared the resulting body burdens to those based on the minimal risk levels (MRLs) established by the Agency for Toxic Substances and Disease Registry. We updated the analysis of Keith et al. [1] with a current pediatric vaccination schedule [2]; baseline aluminum levels at birth; an aluminum retention function that reflects changing glomerular filtration rates in infants; an adjustment for the kinetics of aluminum efflux at the site of injection; contemporaneous MRLs; and the most recent infant body weight data for children 0-60 months of age [3]. Using these updated parameters we found that the body burden of aluminum from vaccines and diet throughout an infant's first year of life is significantly less than the corresponding safe body burden of aluminum modeled using the regulatory MRL. We conclude that episodic exposures to vaccines that contain aluminum adjuvant continue to be extremely low risk to infants and that the benefits of using vaccines containing aluminum adjuvant outweigh any theoretical concerns.


Asunto(s)
Adyuvantes Inmunológicos/efectos adversos , Aluminio/efectos adversos , Aluminio/farmacocinética , Vacunación/efectos adversos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...