Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 886206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966651

RESUMEN

Probiotic bacteria are increasingly popular as dietary supplements and have the potential as alternatives to traditional antibiotics. We have recently shown that pretreatment with Lactobacillus spp. Lb21 increases the life span of C. elegans and results in resistance toward pathogenic methicillin-resistant Staphylococcus aureus (MRSA). The Lb21-mediated MRSA resistance is dependent on the DBL-1 ligand of the TGF-ß signaling pathway. However, the underlying changes at the metabolite level are not understood which limits the application of probiotic bacteria as timely alternatives to traditional antibiotics. In this study, we have performed untargeted nuclear magnetic resonance-based metabolic profiling. We report the metabolomes of Lactobacillus spp. Lb21 and control E. coli OP50 bacteria as well as the nematode-host metabolomes after feeding with these diets. We identify 48 metabolites in the bacteria samples and 51 metabolites in the nematode samples and 63 across all samples. Compared to the control diet, the Lactobacilli pretreatment significantly alters the metabolic profile of the worms. Through sparse Partial Least Squares discriminant analyses, we identify the 20 most important metabolites distinguishing probiotics from the regular OP50 food and worms fed the two different bacterial diets, respectively. Among the changed metabolites, we find lower levels of essential amino acids as well as increased levels of the antioxidants, ascorbate, and glutathione. Since the probiotic diet offers significant protection against MRSA, these metabolites could provide novel ways of combatting MRSA infections.

2.
Cell Death Dis ; 9(10): 1012, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30262881

RESUMEN

Apoptosis ensures removal of damaged cells and helps shape organs during development by removing excessive cells. To prevent the intracellular content of the apoptotic cells causing damage to surrounding cells, apoptotic cells are quickly cleared by engulfment. Tight regulation of apoptosis and engulfment is needed to prevent several pathologies such as cancer, neurodegenerative and autoimmune diseases. There is increasing evidence that the engulfment machinery can regulate the execution of apoptosis. However, the underlying molecular mechanisms are poorly understood. We show that dynein mediates cell non-autonomous cross-talk between the engulfment and apoptotic programs in the Caenorhabditis elegans germline. Dynein is an ATP-powered microtubule-based molecular motor, built from several subunits. Dynein has many diverse functions including transport of cargo around the cell. We show that both dynein light chain 1 (DLC-1) and dynein heavy chain 1 (DHC-1) localize to the nuclear membrane inside apoptotic germ cells in C. elegans. Strikingly, lack of either DLC-1 or DHC-1 at the nuclear membrane inhibits physiological apoptosis specifically in mutants defective in engulfment. This suggests that a cell fate determining dialogue takes place between engulfing somatic sheath cells and apoptotic germ cells. The underlying mechanism involves the core apoptotic protein CED-4/Apaf1, as we find that DLC-1 and the engulfment protein CED-6/GULP are required for the localization of CED-4 to the nuclear membrane of germ cells. A better understanding of the communication between the engulfment machinery and the apoptotic program is essential for identifying novel therapeutic targets in diseases caused by inappropriate engulfment or apoptosis.


Asunto(s)
Apoptosis/fisiología , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/metabolismo , Dineínas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Dineínas Citoplasmáticas/metabolismo , Células Germinativas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal/fisiología
3.
Proteomics ; 15(13): 2350-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25765510

RESUMEN

The gut epithelium formed between an organism and the environment plays an essential role in host-microbe interactions, yet remains one of the least characterized mammalian tissues. Especially the membrane proteins, which are critical to bacterial adhesion, are understudied, because these proteins are low in abundance, and large amounts of sample is needed for their preparation and for undertaking MS-based analysis. The aim of this study was to evaluate three different methods for isolation and preparation of pig intestinal epithelial cells for MS-based analysis of the proteome. Samples were analyzed by LC and electrospray QTOF-MS. The methods were evaluated according to efficiency, purity, transmembrane protein recovery, as well as for suitability to large-scale preparations. Our data clearly demonstrate that mucosal shaving is by far the best-suited method for in-depth MS analysis in terms of ease and speed of sample preparation, as well as protein recovery. In comparison, more gentle methods where intestinal epithelial cells are harvested by shaking are more time consuming, result in lower protein yield, and are prone to increased technical variation due to multiple steps involved.


Asunto(s)
Células Epiteliales/metabolismo , Intestinos/citología , Animales , Cromatografía Liquida , Espectrometría de Masas , Proteoma , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...