Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7889, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036506

RESUMEN

Poxviruses are unusual DNA viruses that replicate in the cytoplasm. To do so, they encode approximately 100 immunomodulatory proteins that counteract cytosolic nucleic acid sensors such as cGAMP synthase (cGAS) along with several other antiviral response pathways. Yet most of these immunomodulators are expressed very early in infection while many are variable host range determinants, and significant gaps remain in our understanding of poxvirus sensing and evasion strategies. Here, we show that after infection is established, subsequent progression of the viral lifecycle is sensed through specific changes to mitochondria that coordinate distinct aspects of the antiviral response. Unlike other viruses that cause extensive mitochondrial damage, poxviruses sustain key mitochondrial functions including membrane potential and respiration while reducing reactive oxygen species that drive inflammation. However, poxvirus replication induces mitochondrial hyperfusion that independently controls the release of mitochondrial DNA (mtDNA) to prime nucleic acid sensors and enables an increase in glycolysis that is necessary to support interferon stimulated gene (ISG) production. To counter this, the poxvirus F17 protein localizes to mitochondria and dysregulates mTOR to simultaneously destabilize cGAS and block increases in glycolysis. Our findings reveal how the poxvirus F17 protein disarms specific mitochondrially orchestrated responses to later stages of poxvirus replication.


Asunto(s)
Ácidos Nucleicos , Poxviridae , Poxviridae/genética , Poxviridae/metabolismo , Citoplasma , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Ácidos Nucleicos/metabolismo
2.
J Virol ; 97(3): e0175822, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916936

RESUMEN

Recent studies have begun to reveal the complex and multifunctional roles of N6-methyladenosine (m6A) modifications and their associated writer, reader, and eraser proteins in infection by diverse RNA and DNA viruses. However, little is known about their regulation and functions during infection by several viruses, including poxviruses. Here, we show that members of the YTH Domain Family (YTHDF), in particular YTHDF2, are downregulated as the prototypical poxvirus, vaccinia virus (VacV) enters later stages of replication in a variety of natural target cell types, but not in commonly used transformed cell lines wherein the control of YTHDF2 expression appears to be dysregulated. YTHDF proteins also decreased at late stages of infection by herpes simplex virus 1 (HSV-1) but not human cytomegalovirus, suggesting that YTHDF2 is downregulated in response to infections that induce host shutoff. In line with this idea, YTHDF2 was potently downregulated upon infection with a VacV mutant expressing catalytically inactive forms of the decapping enzymes, D9 and D10, which fails to degrade dsRNA and induces a protein kinase R response that itself inhibits protein synthesis. Overexpression and RNAi-mediated depletion approaches further demonstrate that YTHDF2 does not directly affect VacV replication. Instead, experimental downregulation of YTHDF2 or the related family member, YTHDF1, induces a potent increase in interferon-stimulated gene expression and establishes an antiviral state that suppresses infection by either VacV or HSV-1. Combined, our data suggest that YTHDF2 is destabilized in response to infection-induced host shutoff and serves to augment host antiviral responses. IMPORTANCE There is increasing recognition of the importance of N6-methyladenosine (m6A) modifications to both viral and host mRNAs and the complex roles this modification plays in determining the fate of infection by diverse RNA and DNA viruses. However, in many instances, the functional contributions and importance of specific m6A writer, reader, and eraser proteins remains unknown. Here, we show that natural target cells but not transformed cell lines downregulate the YTH Domain Family (YTHDF) of m6A reader proteins, in particular YTHDF2, in response to shutoff of protein synthesis upon infection with the large DNA viruses, vaccinia virus (VacV), or herpes simplex virus type 1. We further reveal that YTHDF2 downregulation also occurs as part of the host protein kinase R response to a VacV shutoff mutant and that this downregulation of YTHDF family members functions to enhance interferon-stimulated gene expression to create an antiviral state.


Asunto(s)
Poxviridae , Proteínas de Unión al ARN , Virus Vaccinia , Vaccinia , Humanos , Expresión Génica , Interferones/metabolismo , Poxviridae/genética , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Vaccinia/virología , Virus Vaccinia/metabolismo , Replicación Viral , Infecciones por Poxviridae/virología , Interacciones Huésped-Patógeno
3.
Nat Immunol ; 20(2): 116-118, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643262
4.
PLoS Pathog ; 14(4): e1006995, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29659627

RESUMEN

Methylation at the N6 position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV). Transcriptome-wide m6A-sequencing of the KSHV-positive renal carcinoma cell line iSLK.219 during lytic reactivation revealed the presence of m6A across multiple kinetic classes of viral transcripts, and a concomitant decrease in m6A levels across much of the host transcriptome. However, we found that depletion of the m6A machinery had differential pro- and anti-viral impacts on viral gene expression depending on the cell-type analyzed. In iSLK.219 and iSLK.BAC16 cells the pathway functioned in a pro-viral manner, as depletion of the m6A writer METTL3 and the reader YTHDF2 significantly impaired virion production. In iSLK.219 cells the defect was linked to their roles in the post-transcriptional accumulation of the major viral lytic transactivator ORF50, which is m6A modified. In contrast, although the ORF50 mRNA was also m6A modified in KSHV infected B cells, ORF50 protein expression was instead increased upon depletion of METTL3, or, to a lesser extent, YTHDF2. These results highlight that the m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types.


Asunto(s)
Adenosina/análogos & derivados , Herpesvirus Humano 8/patogenicidad , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Sarcoma de Kaposi/patología , Latencia del Virus/fisiología , Replicación Viral/fisiología , Adenosina/química , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos B/virología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/virología , Células Cultivadas , Células HEK293 , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/virología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virología
5.
J Virol ; 90(1): 599-604, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26468530

RESUMEN

Transcription of herpesviral late genes is stimulated after the onset of viral DNA replication but otherwise restricted. Late gene expression in gammaherpesviruses requires the coordination of six early viral proteins, termed viral transactivation factors (vTFs). Here, we mapped the organization of this protein complex for Kaposi's sarcoma-associated herpesvirus. Disruption of this complex via point mutation of the interaction interface between the open reading frame 24 (ORF24) and ORF34 vTFs ablated both late gene expression and viral replication.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Transcripción Genética , Proteínas Virales/metabolismo , Línea Celular , Análisis Mutacional de ADN , Herpesvirus Humano 8/fisiología , Humanos , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Puntual , Unión Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas Virales/genética , Replicación Viral
6.
Elife ; 42015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26565589

RESUMEN

Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Factor de Transcripción Activador 4/metabolismo , Línea Celular Tumoral , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Pruebas Genéticas , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Proteínas de Unión al ARN/metabolismo
7.
J Virol ; 89(6): 3343-55, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25589641

RESUMEN

UNLABELLED: Rapid innate responses to viral encounters are crucial to shaping the outcome of infection, from viral clearance to persistence. Transforming growth factor ß (TGF-ß) is a potent immune suppressor that is upregulated early upon viral infection and maintained during chronic infections in both mice and humans. However, the role of TGF-ß signaling in regulating individual cell types in vivo is still unclear. Using infections with two different persistent viruses, murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV; Cl13), in their natural rodent host, we observed that TGF-ß signaling on dendritic cells (DCs) did not dampen DC maturation or cytokine production in the early stages of chronic infection with either virus in vivo. In contrast, TGF-ß signaling prior to (but not during) chronic viral infection directly restricted the natural killer (NK) cell number and effector function. This restriction likely compromised both the early control of and host survival upon MCMV infection but not the long-term control of LCMV infection. These data highlight the context and timing of TGF-ß signaling on different innate cells that contribute to the early host response, which ultimately influences the outcome of chronic viral infection in vivo. IMPORTANCE: In vivo host responses to pathogens are complex processes involving the cooperation of many different immune cells migrating to specific tissues over time, but these events cannot be replicated in vitro. Viruses causing chronic infections are able to subvert this immune response and represent a human health burden. Here we used two well-characterized viruses that are able to persist in their natural mouse host to dissect the role of the suppressive molecule TGF-ß in dampening host responses to infection in vivo. This report presents information that allows an increased understanding of long-studied TGF-ß signaling by examining its direct effect on different immune cells that are activated very early after in vivo viral infection and may aid with the development of new antiviral therapeutic strategies.


Asunto(s)
Células Dendríticas/inmunología , Infecciones por Herpesviridae/veterinaria , Células Asesinas Naturales/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Muromegalovirus/fisiología , Enfermedades de los Roedores/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Citocinas/inmunología , Femenino , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Humanos , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades de los Roedores/genética , Enfermedades de los Roedores/virología , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...