Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 162(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33543235

RESUMEN

Acute stress is a potent suppressor of pulsatile luteinizing hormone (LH) secretion, but the mechanisms through which corticotrophin-releasing hormone (CRH) neurons inhibit gonadotropin-releasing hormone (GnRH) release remain unclear. The activation of paraventricular nucleus (PVN) CRH neurons with Cre-dependent hM3Dq in Crh-Cre female mice resulted in the robust suppression of pulsatile LH secretion. Channelrhodopsin (ChR2)-assisted circuit mapping revealed that PVN CRH neuron projections existed around kisspeptin neurons in the arcuate nucleus (ARN) although many more fibers made close appositions with GnRH neuron distal dendrons in the ventral ARN. Acutely prepared brain slice electrophysiology experiments in GnRH- green fluorescent protein (GFP) mice showed a dose-dependent (30 and 300 nM CRH) activation of firing in ~20% of GnRH neurons in both intact diestrus and ovariectomized mice with inhibitory effects being uncommon (<8%). Confocal GCaMP6 imaging of GnRH neuron distal dendrons in acute para-horizontal brain slices from GnRH-Cre mice injected with Cre-dependent GCaMP6s adeno-associated viruses demonstrated no effects of 30 to 300 nM CRH on GnRH neuron dendron calcium concentrations. Electrophysiological recordings of ARN kisspeptin neurons in Crh-Cre,Kiss1-GFP mice revealed no effects of 30 -300 nM CRH on basal or neurokinin B-stimulated firing rate. Similarly, the optogenetic activation (2-20 Hz) of CRH nerve terminals in the ARN of Crh-Cre,Kiss1-GFP mice injected with Cre-dependent ChR2 had no effect on kisspeptin neuron firing. Together, these studies demonstrate that PVN CRH neurons potently suppress LH pulsatility but do not exert direct inhibitory control over GnRH neurons, at their cell body or dendron, or the ARN kisspeptin neuron pulse generator in the female mouse.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/fisiología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Flujo Pulsátil/efectos de los fármacos , Vías Secretoras/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
2.
Elife ; 102021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33464205

RESUMEN

The necessity and functional significance of neurotransmitter co-transmission remains unclear. The glutamatergic 'KNDy' neurons co-express kisspeptin, neurokinin B (NKB), and dynorphin and exhibit a highly stereotyped synchronized behavior that reads out to the gonadotropin-releasing hormone (GnRH) neuron dendrons to drive episodic hormone secretion. Using expansion microscopy, we show that KNDy neurons make abundant close, non-synaptic appositions with the GnRH neuron dendron. Electrophysiology and confocal GCaMP6 imaging demonstrated that, despite all three neuropeptides being released from KNDy terminals, only kisspeptin was able to activate the GnRH neuron dendron. Mice with a selective deletion of kisspeptin from KNDy neurons failed to exhibit pulsatile hormone secretion but maintained synchronized episodic KNDy neuron behavior that is thought to depend on recurrent NKB and dynorphin transmission. This indicates that KNDy neurons drive episodic hormone secretion through highly redundant neuropeptide co-transmission orchestrated by differential post-synaptic neuropeptide receptor expression at the GnRH neuron dendron and KNDy neuron.


Asunto(s)
Dendrímeros/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/fisiología , Neuropéptidos/metabolismo , Animales , Femenino , Masculino , Ratones
3.
J Neuroendocrinol ; 32(5): e12849, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32337804

RESUMEN

Adverse energy states exert a potent suppressive influence on the reproductive axis by inhibiting the pulsatile release of gonadotrophin-releasing hormone and luteinising hormone. One potential mechanism underlying this involves the metabolic-sensing pro-opiomelanocortin and agouti-related peptide/neuropeptide Y (AgRP/NPY) neuronal populations directly controlling the activity of the arcuate nucleus kisspeptin neurones comprising the gonadotrophin-releasing hormone pulse generator. Using acute brain slice electrophysiology and calcium imaging approaches in Kiss1-GFP and Kiss1-GCaMP6 mice, we investigated whether NPY and α-melanocyte-stimulating hormone provide a direct modulatory influence on the activity of arcuate kisspeptin neurones in the adult mouse. NPY was found to exert a potent suppressive influence upon the neurokinin B-evoked firing of approximately one-half of arcuate kisspeptin neurones in both sexes. This effect was blocked partially by the NPY1R antagonist BIBO 3304, whereas the NPY5R antagonist L152,804 was ineffective. NPY also suppressed the neurokinin B-evoked increase in intracellular calcium levels in the presence of tetrodotoxin and amino acid receptor antagonists, indicating that the inhibitory effects of NPY are direct on kisspeptin neurones. By contrast, no effects of α-melanocyte-stimulating hormone were found on the excitability of arcuate kisspeptin neurones. These studies provide further evidence supporting the hypothesis that AgRP/NPY neurones link energy status and luteinising hormone pulsatility by demonstrating that NPY has a direct suppressive influence upon the activity of a subpopulation of arcuate kisspeptin neurones.


Asunto(s)
Kisspeptinas , Neuropéptido Y , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Calcio/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Ratones , Neuroquinina B/metabolismo , Neuropéptido Y/metabolismo , alfa-MSH/farmacología
4.
Neuroendocrinology ; 110(7-8): 671-687, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31630145

RESUMEN

INTRODUCTION: The central regulation of fertility is carefully coordinated with energy homeostasis, and infertility is frequently the outcome of energy imbalance. Neurons in the hypothalamus expressing neuropeptide Y and agouti-related peptide (NPY/AgRP neurons) are strongly implicated in linking metabolic cues with fertility regulation. OBJECTIVE: We aimed here to determine the impact of selectively activating NPY/AgRP neurons, critical regulators of metabolism, on the activity of luteinizing hormone (LH) pulse generation. METHODS: We employed a suite of in vivo optogenetic and chemogenetic approaches with serial measurements of LH to determine the impact of selectively activating NPY/AgRP neurons on dynamic LH secretion. In addition, electrophysiological studies in ex vivo brain slices were employed to ascertain the functional impact of activating NPY/AgRP neurons on gonadotropin-releasing hormone (GnRH) neurons. RESULTS: Selective activation of NPY/AgRP neurons significantly decreased post-castration LH secretion. This was observed in males and females, as well as in prenatally androgenized females that recapitulate the persistently elevated LH pulse frequency characteristic of polycystic ovary syndrome (PCOS). Reduced LH pulse frequency was also observed when optogenetic stimulation was restricted to NPY/AgRP fiber projections surrounding GnRH neuron cell bodies in the rostral preoptic area. However, electrophysiological studies in ex vivo brain slices indicated these effects were likely to be indirect. CONCLUSIONS: These data demonstrate the ability of NPY/AgRP neuronal signaling to modulate and, specifically, reduce GnRH/LH pulse generation. The findings suggest a mechanism by which increased activity of this hunger circuit, in response to negative energy balance, mediates impaired fertility in otherwise reproductively fit states, and highlight a potential mechanism to slow LH pulsatility in female infertility disorders, such as PCOS, that are associated with hyperactive LH secretion.


Asunto(s)
Hambre/fisiología , Hormona Luteinizante/metabolismo , Red Nerviosa/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Neuropéptido Y/metabolismo , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Síndrome del Ovario Poliquístico/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/psicología , Vías Secretoras/fisiología
5.
J Neurosci ; 39(45): 9013-9027, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31527119

RESUMEN

Cleavage of amyloid precursor protein (APP) by ß-secretase BACE1 initiates the production and accumulation of neurotoxic amyloid-ß peptides, which is widely considered an essential pathogenic mechanism in Alzheimer's disease (AD). Here, we report that BACE1 is essential for normal auditory function. Compared with wild-type littermates, BACE1-/- mice of either sex exhibit significant hearing deficits, as indicated by increased thresholds and reduced amplitudes in auditory brainstem responses (ABRs) and decreased distortion product otoacoustic emissions (DPOAEs). Immunohistochemistry revealed aberrant synaptic organization in the cochlea and hypomyelination of auditory nerve fibers as predominant neuropathological substrates of hearing loss in BACE1-/- mice. In particular, we found that fibers of spiral ganglion neurons (SGN) close to the organ of Corti are disorganized and abnormally swollen. BACE1 deficiency also engenders organization defects in the postsynaptic compartment of SGN fibers with ectopic overexpression of PSD95 far outside the synaptic region. During postnatal development, auditory fiber myelination in BACE1-/- mice lags behind dramatically and remains incomplete into adulthood. We relate the marked hypomyelination to the impaired processing of Neuregulin-1 when BACE1 is absent. To determine whether the cochlea of adult wild-type mice is susceptible to AD treatment-like suppression of BACE1, we administered the established BACE1 inhibitor NB-360 for 6 weeks. The drug suppressed BACE1 activity in the brain, but did not impair hearing performance and, upon neuropathological examination, did not produce the characteristic cochlear abnormalities of BACE1-/- mice. Together, these data strongly suggest that the hearing loss of BACE1 knock-out mice represents a developmental phenotype.SIGNIFICANCE STATEMENT Given its crucial role in the pathogenesis of Alzheimer's disease (AD), BACE1 is a prime pharmacological target for AD prevention and therapy. However, the safe and long-term administration of BACE1-inhibitors as envisioned in AD requires a comprehensive understanding of the various physiological functions of BACE1. Here, we report that BACE1 is essential for the processing of auditory signals in the inner ear, as BACE1-deficient mice exhibit significant hearing loss. We relate this deficit to impaired myelination and aberrant synapse formation in the cochlea, which manifest during postnatal development. By contrast, prolonged pharmacological suppression of BACE1 activity in adult wild-type mice did not reproduce the hearing deficit or the cochlear abnormalities of BACE1 null mice.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Cóclea/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Cóclea/fisiología , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Neurregulina-1/genética , Neurregulina-1/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/fisiología
6.
EBioMedicine ; 44: 582-596, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31178425

RESUMEN

BACKGROUND: Enhanced GABA activity in the brain and a hyperactive hypothalamic-pituitary-gonadal axis are associated with polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility. Women with PCOS exhibit elevated cerebrospinal fluid GABA levels and preclinical models of PCOS exhibit increased GABAergic input to GnRH neurons, the central regulators of reproduction. The arcuate nucleus (ARN) is postulated as the anatomical origin of elevated GABAergic innervation; however, the functional role of this circuit is undefined. METHODS: We employed a combination of targeted optogenetic and chemogenetic approaches to assess the impact of acute and chronic ARN GABA neuron activation. Selective acute activation of ARN GABA neurons and their fiber projections was coupled with serial blood sampling for luteinizing hormone secretion in anesthetized male, female and prenatally androgenised (PNA) mice modelling PCOS. In addition, GnRH neuron responses to ARN GABA fiber stimulation were recorded in ex vivo brain slices. Chronic activation of ARN GABA neurons in healthy female mice was coupled with reproductive phenotyping for PCOS-like features. FINDINGS: Acute stimulation of ARN GABA fibers adjacent to GnRH neurons resulted in a significant and long-lasting increase in LH secretion in male and female mice. The amplitude of this response was blunted in PNA mice, which also exhibited a blunted LH response to GnRH administration. Infrequent and variable GABAA-dependent changes in GnRH neuron firing were observed in brain slices. Chronic activation of ARN GABA neurons in healthy females impaired estrous cyclicity, decreased corpora lutea number and increased circulating testosterone levels. INTERPRETATION: ARN GABA neurons can stimulate the hypothalamic-pituitary axis and chronic activation of ARN GABA neurons can mimic the reproductive deficits of PCOS in healthy females. Unexpectedly blunted HPG axis responses in PNA mice may reflect a history of high frequency GnRH/LH secretion and reduced LH stores, but also raise questions about impaired function within the ARN GABA population and the involvement of other circuits.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Neuronas GABAérgicas/metabolismo , Hormona Luteinizante/biosíntesis , Ovario/metabolismo , Síndrome del Ovario Poliquístico/etiología , Síndrome del Ovario Poliquístico/metabolismo , Andrógenos/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/fisiopatología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Inmunohistoquímica , Ratones , Ratones Transgénicos , Ovario/patología , Ovario/fisiopatología , Síndrome del Ovario Poliquístico/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
7.
Commun Biol ; 1: 155, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30302399

RESUMEN

Kv7.1 (KCNQ1) coassembles with KCNE1 to generate the cardiac IKs -channel. Gain- and loss-of-function mutations in KCNQ1 are associated with cardiac arrhthymias, highlighting the importance of modulating IKs activity for cardiac function. Here, we report proteolysis of Kv7.1 as an irreversible posttranslational modification. The identification of two C-terminal fragments of Kv7.1 led us to identify an aspartate critical for the generation of one of the fragments and caspases as responsible for mediating proteolysis. Activating caspases reduces Kv7.1/KCNE1 currents, which is abrogated in cells expressing caspase-resistant channels. Enhanced cleavage of Kv7.1 can be detected for the LQT mutation G460S, which is located adjacent to the cleavage site, whereas a calmodulin-binding-deficient mutation impairs cleavage. Application of apoptotic stimuli or doxorubicin-induced cardiotoxicity provokes caspase-mediated cleavage of endogenous IKs in human cardiomyocytes. In summary, caspases are novel regulatory components of IKs channels that may have important implications for the molecular mechanism of doxorubicin-induced cardiotoxicity.

8.
J Neurosci ; 37(12): 3160-3170, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28213443

RESUMEN

Cues that predict the availability of food rewards influence motivational states and elicit food-seeking behaviors. If a cue no longer predicts food availability, then animals may adapt accordingly by inhibiting food-seeking responses. Sparsely activated sets of neurons, coined "neuronal ensembles," have been shown to encode the strength of reward-cue associations. Although alterations in intrinsic excitability have been shown to underlie many learning and memory processes, little is known about these properties specifically on cue-activated neuronal ensembles. We examined the activation patterns of cue-activated orbitofrontal cortex (OFC) and nucleus accumbens (NAc) shell ensembles using wild-type and Fos-GFP mice, which express green fluorescent protein (GFP) in activated neurons, after appetitive conditioning with sucrose and extinction learning. We also investigated the neuronal excitability of recently activated, GFP+ neurons in these brain areas using whole-cell electrophysiology in brain slices. Exposure to a sucrose cue elicited activation of neurons in both the NAc shell and OFC. In the NAc shell, but not the OFC, these activated GFP+ neurons were more excitable than surrounding GFP- neurons. After extinction, the number of neurons activated in both areas was reduced and activated ensembles in neither area exhibited altered excitability. These data suggest that learning-induced alterations in the intrinsic excitability of neuronal ensembles is regulated dynamically across different brain areas. Furthermore, we show that changes in associative strength modulate the excitability profile of activated ensembles in the NAc shell.SIGNIFICANCE STATEMENT Sparsely distributed sets of neurons called "neuronal ensembles" encode learned associations about food and cues predictive of its availability. Widespread changes in neuronal excitability have been observed in limbic brain areas after associative learning, but little is known about the excitability changes that occur specifically on neuronal ensembles that encode appetitive associations. Here, we reveal that sucrose cue exposure recruited a more excitable ensemble in the nucleus accumbens, but not orbitofrontal cortex, compared with their surrounding neurons. This excitability difference was not observed when the cue's salience was diminished after extinction learning. These novel data provide evidence that the intrinsic excitability of appetitive memory-encoding ensembles is regulated differentially across brain areas and adapts dynamically to changes in associative strength.


Asunto(s)
Adaptación Fisiológica/fisiología , Regulación del Apetito/fisiología , Excitabilidad Cortical/fisiología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Recompensa , Animales , Señales (Psicología) , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología
9.
Channels (Austin) ; 10(5): 365-378, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27253079

RESUMEN

ß-site APP-cleaving enzyme 1 (BACE1) has become infamous for its pivotal role in the pathogenesis of Alzheimer's disease (AD). Consequently, BACE1 represents a prime target in drug development. Despite its detrimental involvement in AD, it should be quite obvious that BACE1 is not primarily present in the brain to drive mental decline. In fact, additional functions have been identified. In this review, we focus on the regulation of ion channels, specifically voltage-gated sodium and KCNQ potassium channels, by BACE1. These studies provide evidence for a highly unexpected feature in the functional repertoire of BACE1. Although capable of cleaving accessory channel subunits, BACE1 exerts many of its physiologically significant effects through direct, non-enzymatic interactions with main channel subunits. We discuss how the underlying mechanisms can be conceived and develop scenarios how the regulation of ion conductances by BACE1 might shape electric activity in the intact and diseased brain and heart.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Ácido Aspártico Endopeptidasas/fisiología , Activación del Canal Iónico , Enfermedad de Alzheimer/fisiopatología , Animales , Humanos , Neuronas/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Canales de Sodio Activados por Voltaje/fisiología
10.
J Mol Cell Cardiol ; 89(Pt B): 335-48, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26454161

RESUMEN

KCNQ1 (Kv7.1) proteins form a homotetrameric channel, which produces a voltage-dependent K(+) current. Co-assembly of KCNQ1 with the auxiliary ß-subunit KCNE1 strongly up-regulates this current. In cardiac myocytes, KCNQ1/E1 complexes are thought to give rise to the delayed rectifier current IKs, which contributes to cardiac action potential repolarization. We report here that the type I membrane protein BACE1 (ß-site APP-cleaving enzyme 1), which is best known for its detrimental role in Alzheimer's disease, but is also, as reported here, present in cardiac myocytes, serves as a novel interaction partner of KCNQ1. Using HEK293T cells as heterologous expression system to study the electrophysiological effects of BACE1 and KCNE1 on KCNQ1 in different combinations, our main findings were the following: (1) BACE1 slowed the inactivation of KCNQ1 current producing an increased initial response to depolarizing voltage steps. (2) Activation kinetics of KCNQ1/E1 currents were significantly slowed in the presence of co-expressed BACE1. (3) BACE1 impaired reconstituted cardiac IKs when cardiac action potentials were used as voltage commands, but interestingly augmented the IKs of ATP-deprived cells, suggesting that the effect of BACE1 depends on the metabolic state of the cell. (4) The electrophysiological effects of BACE1 on KCNQ1 reported here were independent of its enzymatic activity, as they were preserved when the proteolytically inactive variant BACE1 D289N was co-transfected in lieu of BACE1 or when BACE1-expressing cells were treated with the BACE1-inhibiting compound C3. (5) Co-immunoprecipitation and fluorescence recovery after photobleaching (FRAP) supported our hypothesis that BACE1 modifies the biophysical properties of IKs by physically interacting with KCNQ1 in a ß-subunit-like fashion. Strongly underscoring the functional significance of this interaction, we detected BACE1 in human iPSC-derived cardiomyocytes and murine cardiac tissue and observed decreased IKs in atrial cardiomyocytes of BACE1-deficient mice.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/deficiencia , Ácido Aspártico Endopeptidasas/deficiencia , Activación del Canal Iónico , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Potenciales de Acción , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Femenino , Células HEK293 , Humanos , Inmunoprecipitación , Cinética , Masculino , Ratones , Complejos Multiproteicos/metabolismo , Fenotipo , Unión Proteica , Proteolisis
11.
J Neurosci ; 35(8): 3298-311, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25716831

RESUMEN

The ß-secretase BACE1 is widely known for its pivotal role in the amyloidogenic pathway leading to Alzheimer's disease, but how its action on transmembrane proteins other than the amyloid precursor protein affects the nervous system is only beginning to be understood. We report here that BACE1 regulates neuronal excitability through an unorthodox, nonenzymatic interaction with members of the KCNQ (Kv7) family that give rise to the M-current, a noninactivating potassium current with slow kinetics. In hippocampal neurons from BACE1(-/-) mice, loss of M-current enhanced neuronal excitability. We relate the diminished M-current to the previously reported epileptic phenotype of BACE1-deficient mice. In HEK293T cells, BACE1 amplified reconstituted M-currents, altered their voltage dependence, accelerated activation, and slowed deactivation. Biochemical evidence strongly suggested that BACE1 physically associates with channel proteins in a ß-subunit-like fashion. Our results establish BACE1 as a physiologically essential constituent of regular M-current function and elucidate a striking new feature of how BACE1 impacts on neuronal activity in the intact and diseased brain.


Asunto(s)
Potenciales de Acción , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Hipocampo/metabolismo , Canales de Potasio KCNQ/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Células Cultivadas , Femenino , Células HEK293 , Hipocampo/citología , Hipocampo/fisiología , Humanos , Canales de Potasio KCNQ/genética , Masculino , Ratones , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología
12.
Eur J Pharmacol ; 728: 100-6, 2014 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-24508524

RESUMEN

In contrast to several other antipsychotic drugs, the effects of the atypical antipsychotic risperidone on voltage-gated sodium channels have not been characterized yet, despite its wide clinical use. Here we performed whole-cell voltage-clamp recordings to analyze the effects of risperidone on voltage-dependent sodium currents of N1E-115 mouse neuroblastoma cells carried by either endogenous sodium channels or transfected NaV1.6 channels. Risperidone inhibited both endogenous and NaV1.6-mediated sodium currents at concentrations that are expected around active synaptic release sites owing to its strong accumulation in synaptic vesicles. When determined for pharmacologically isolated NaV1.6, risperidone inhibited peak inward currents with an IC50 of 49 µM. Channel block occurred in a state-dependent fashion with risperidone displaying a fourfold higher affinity for the inactivated state than for the resting state. As a consequence of the low state dependence, risperidone produced only a small, but significant leftward shift of the steady-state inactivation curve and it required concentrations ≥ 30 µM to significantly slow the time course of recovery from inactivation. Risperidone (10 µM) gave rise to a pronounced use-dependent block when sodium currents were elicited by trains of brief voltage pulses at higher frequencies. Our data suggest that, compared to other antipsychotic drugs as well as to local anesthetics and sodium channel-targeting anticonvulsants, risperidone displays an unusual blocking profile where a rather low degree of state dependence is associated with a prominent use-dependent block.


Asunto(s)
Antipsicóticos/farmacología , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Risperidona/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Potenciales de la Membrana/efectos de los fármacos , Ratones , Canal de Sodio Activado por Voltaje NAV1.6/genética , Técnicas de Placa-Clamp , Plásmidos , Transfección
13.
J Neurosci ; 33(42): 16627-41, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133266

RESUMEN

Topically applied camphor elicits a sensation of cool, but nothing is known about how it affects cold temperature sensing. We found that camphor sensitizes a subpopulation of menthol-sensitive native cutaneous nociceptors in the mouse to cold, but desensitizes and partially blocks heterologously expressed TRPM8 (transient receptor potential cation channel subfamily M member 8). In contrast, camphor reduces potassium outward currents in cultured sensory neurons and, in cold nociceptors, the cold-sensitizing effects of camphor and menthol are additive. Using a membrane potential dye-based screening assay and heterologously expressed potassium channels, we found that the effects of camphor are mediated by inhibition of Kv7.2/3 channels subtypes that generate the M-current in neurons. In line with this finding, the specific M-current blocker XE991 reproduced the cold-sensitizing effect of camphor in nociceptors. However, the M-channel blocking effects of XE991 and camphor are not sufficient to initiate cold transduction but require a cold-activated inward current generated by TRPM8. The cold-sensitizing effects of XE991 and camphor are largest in high-threshold cold nociceptors. Low-threshold corneal cold thermoreceptors that express high levels of TRPM8 and lack potassium channels are not affected by camphor. We also found that menthol--like camphor--potently inhibits Kv7.2/3 channels. The apparent functional synergism arising from TRPM8 activation and M-current block can improve the effectiveness of topical coolants and cooling lotions, and may also enhance TRPM8-mediated analgesia.


Asunto(s)
Nociceptores/fisiología , Transducción de Señal/fisiología , Canales Catiónicos TRPM/metabolismo , Termorreceptores/fisiología , Sensación Térmica/fisiología , Animales , Alcanfor/farmacología , Frío , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Masculino , Mentol/farmacología , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/metabolismo , Nociceptores/metabolismo , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPM/genética , Termorreceptores/metabolismo , Sensación Térmica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...