Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(17): 12148-12156, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070707

RESUMEN

Calcium oxalate precipitation is a common pathological calcification in the human body, whereby crystallite morphology is influenced by the chelating properties of biological ions such as citrate. It has been suggested that citrate could steer oxalate formation towards its dihydrated form and away from the monohydrated form, which was identified as a major cause for disease. To assess the influence of the citrate ion on the resulting calcium oxalate, surface energies were calculated at the dispersion-corrected density functional level of theory for both monohydrated and dihydrated calcium oxalate. Different adsorption geometries were considered by varying the attacking angle of citrate as well as by considering the citrate ion on top of an adsorbed water layer or penetrating the water layer. The obtained results were compared to ab initio molecular dynamics simulations and experimental scanning electron microscope images. A strong preference for citrate adsorption on calcium oxalate dihydrate was observed, suggesting medical applications for the treatment of such pathological calcifications.

2.
Phys Chem Chem Phys ; 24(25): 15565-15578, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35722820

RESUMEN

Emissions of diesel exhaust gas in confined work environments are a major health and safety concern, because of exposition to nitrogen oxides (NOx). Removal of these pollutants from exhaust gas calls for engineering of an optimum sorbent for the selective trapping of NO and NO2 in the presence of water. To this end, periodic density functional theory calculations along with a recent dispersion correction scheme, namely the Tkatchenko-Scheffler scheme coupled with iterative Hirshfeld partitioning TS/HI, were performed to investigate the interactions between NO, NO2, H2O and a series of divalent cation (Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Fe2+, Cu2+, Zn2+, Pd2+, and Pt2+) faujasites. This enabled the identification of the optimum zeolites to selectively capture NOx in the presence of H2O, with respect to two important criteria, such as thermodynamic affinity and regeneration. Our results revealed that Pt2+ and Pd2+ containing faujasites are the best candidates for effective capture of both NO and NO2 molecules, which paves the way towards the use of these sorbents to address this challenging application.


Asunto(s)
Zeolitas , Adsorción , Cationes Bivalentes , Teoría Funcional de la Densidad , Dióxido de Nitrógeno/análisis , Emisiones de Vehículos
3.
Mater Sci Eng C Mater Biol Appl ; 129: 112391, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34579910

RESUMEN

In this work, we designed and fabricated a CaP composite bio-coating with different surface morphologies on a carbon/carbon (C/C) matrix by means of hybrid supersonic atmospheric plasma spraying (SAPS) and microwave-hydrothermal (MH) technologies. We found that all studied coating materials can support mesenchymal stem cells (MSCs) proliferation with prolonged culture time (3 days and 7 days) in vitro. Furthermore, according to the (Confocal Laser Scanning Microscopy) CLSM results, the MSCs also showed good attachment and different spreading morphologies on SAPS/MH coatings. As such, C/C matrix, the MH treated coatings with needle-like and rod-like microstructures were chosen for further in vivo investigation. Considering the good bonding between host tissue and the studied materials, the in vivo morphology studies confirmed a good histocompatibility for all coating samples, as well as a decreasing expression for inflammatory factors in a physiological environment. The histological results around the implants indicated different cell aggregation and vascularization ability in the local micro-environment. In particular, based on the reduction of the C/C initial surface flaws (e.g. hydrophobicity, biological inertia and easily producing carbon fragments or particles), the MH treated coating with rod-like surface morphology with a specific surface area (~2.33 m2/g) and roughness (~13.80 µm), showed excellent performance as a promising implant in live tissue.


Asunto(s)
Materiales Biocompatibles Revestidos , Células Madre Mesenquimatosas , Carbono , Materiales Biocompatibles Revestidos/farmacología , Prótesis e Implantes , Propiedades de Superficie
4.
Nanomaterials (Basel) ; 9(5)2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071952

RESUMEN

Although dibenzyl disulfide (DBDS) is used as a mineral oil stabilizer, its presence in electrical transformer oil is associated as one of the major causes of copper corrosion and subsequent formation of copper sulfide. In order to prevent these undesirable processes, MY zeolites (with M = Li, Na, K, Cs, Cu or Ag) are proposed to adsorb molecularly DBDS. In this study, different MY zeolites are investigated at the DFT+D level in order to assess their ability in DBDS adsorption. It was found that CsY, AgY and CuY exhibit the best compromise between high interaction energies and limited S-S bond activation, thus emerging as optimal adsorbents for DBDS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA