Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38475220

RESUMEN

This study proposes the new condition monitoring concept of using features in the measured rotation, or 'pitch' signal, of a crossing vehicle as an indicator of the presence of foundation scour in a bridge. The concept is explored through two-dimensional vehicle-bridge interaction modelling, with a reduction in stiffness under a pier used to represent the effects of scour. A train consisting of three 10-degree-of-freedom carriages cross the model on a profiled train track, each train varying slightly in terms of mass and velocity. An analysis of the pitch of the train carriages can clearly identify when scour is present. The concept is further tested in a scaled laboratory experiment consisting of a tractor-trailer crossing a four-span simply supported bridge on piers. The foundation support is represented by four springs under each pier, which can be replaced with springs of a reduced stiffness to mimic the effect of scour. The laboratory model also consistently shows a divergence in vehicle pitch between healthy and scoured bridge states.

2.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514621

RESUMEN

Structural Health Monitoring (SHM) is a technique that involves gathering information to ensure that a structure is safe and behaving as expected. Within SHM, vibration-based monitoring is generally seen as one of the more cost-effective types of monitoring. However, vibration-based monitoring has mostly been undertaken on long-span bridges using data collected with a dense network of sensors. Historically, the logistical difficulty of collecting data on short- and medium-span bridges has meant that the usefulness of vibration-based methods on these bridges is largely unknown. Therefore, this study proposes Minimal Information Data-modelling (MID). MID is an approach that utilises low-cost, easily implementable sensors that are potentially feasible for operators to purchase and operate across a network. This approach will be investigated to determine whether MID is a feasible approach for monitoring short- and medium- span bridges. The results from MID were assessed to determine whether they could detect a suitably small shift in frequency, which is indicative of damage. It was determined that the data models could reliably detect frequency shifts as low as 0.01 Hz. This magnitude of frequency shift is similar to the level of frequency shift reported for a range of bridge damage cases found by others and validated with FE models. The accuracy achieved by the data models indicates that MID could potentially be used as a damage detection method. The cost of the equipment used to collect the data was approximately £370, demonstrating that it is feasible to use MID to monitor bridges across an entire network.

3.
Sensors (Basel) ; 22(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35808490

RESUMEN

Structural Health Monitoring (SHM) is critical in the observation and analysis of our national infrastructure of bridges. Due to the ease of measuring bridge rotation, bridge SHM using rotation measurements is becoming more popular, as even a single DC accelerometer placed at each end of span can accurately capture bridge deformations. Event detection methods for SHM typically entail additional instrumentation, such as strain gauges or continuously recording video cameras, and thus the additional cost limits their utility in resource-constrained environments and for wider deployment. Herein, we present a more cost-effective event detection method which exploits the existing bridge rotation instrumentation (tri-axial MEMS accelerometers) to also act as a trigger for subsequent stages of the SHM system and thus obviates the need for additional vehicle detection equipment. We show how the generalised variance over a short sliding window can be used to robustly discriminate individual vehicle loading events, both in time and magnitude, from raw acceleration data. Numerical simulation results examine the operation of the event detector under varying operating conditions, including vehicle types and sensor locations. The method's application is demonstrated for two case studies involving in-service bridges experiencing live free-flow traffic. An initial implementation on a Raspberry Pi Zero 2 shows that the proposed functionality can be realised in less than 400 ARM A32 instructions with a latency of 47 microseconds.


Asunto(s)
Aceleración , Acelerometría , Monitoreo Fisiológico , Rotación
5.
Environ Manage ; 56(5): 1252-71, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26163198

RESUMEN

The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8% of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15% of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83%. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3% of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.


Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal/métodos , Agricultura/métodos , Agricultura/tendencias , Bosques , Pradera , Sudeste de Estados Unidos , Árboles , Urbanización/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...