Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mob DNA ; 15(1): 16, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103880

RESUMEN

BACKGROUND: Centromere function is highly conserved across eukaryotes, but the underlying centromeric DNA sequences vary dramatically between species. Centromeres often contain a high proportion of repetitive DNA, such as tandem repeats and/or transposable elements (TEs). Einkorn wheat centromeres lack tandem repeat arrays and are instead composed mostly of the two long terminal repeat (LTR) retrotransposon families RLG_Cereba and RLG_Quinta which specifically insert in centromeres. However, it is poorly understood how these two TE families relate to each other and if and how they contribute to centromere function and evolution. RESULTS: Based on conservation of diagnostic motifs (LTRs, integrase and primer binding site and polypurine-tract), we propose that RLG_Cereba and RLG_Quinta are a pair of autonomous and non-autonomous partners, in which the autonomous RLG_Cereba contributes all the proteins required for transposition, while the non-autonomous RLG_Quinta contributes GAG protein. Phylogenetic analysis of predicted GAG proteins showed that the RLG_Cereba lineage was present for at least 100 million years in monocotyledon plants. In contrast, RLG_Quinta evolved from RLG_Cereba between 28 and 35 million years ago in the common ancestor of oat and wheat. Interestingly, the integrase of RLG_Cereba is fused to a so-called CR-domain, which is hypothesized to guide the integrase to the functional centromere. Indeed, ChIP-seq data and TE population analysis show only the youngest subfamilies of RLG_Cereba and RLG_Quinta are found in the active centromeres. Importantly, the LTRs of RLG_Quinta and RLG_Cereba are strongly associated with the presence of the centromere-specific CENH3 histone variant. We hypothesize that the LTRs of RLG_Cereba and RLG_Quinta contribute to wheat centromere integrity by phasing and/or placing CENH3 nucleosomes, thus favoring their persistence in the competitive centromere-niche. CONCLUSION: Our data show that RLG_Cereba cross-mobilizes the non-autonomous RLG_Quinta retrotransposons. New copies of both families are specifically integrated into functional centromeres presumably through direct binding of the integrase CR domain to CENH3 histone variants. The LTRs of newly inserted RLG_Cereba and RLG_Quinta elements, in turn, recruit and/or phase new CENH3 deposition. This mutualistic interplay between the two TE families and the plant host dynamically maintains wheat centromeres.

2.
Theor Appl Genet ; 137(4): 88, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532180

RESUMEN

KEY MESSAGE: A bread wheat panel reveals rich genetic diversity in Turkish, Pakistani and Iranian landraces and novel resistance loci to diverse powdery mildew isolates via subsetting approaches in association studies. Wheat breeding for disease resistance relies on the availability and use of diverse genetic resources. More than 800,000 wheat accessions are globally conserved in gene banks, but they are mostly uncharacterized for the presence of resistance genes and their potential for agriculture. Based on the selective reduction of previously assembled collections for allele mining for disease resistance, we assembled a trait-customized panel of 755 geographically diverse bread wheat accessions with a focus on landraces, called the LandracePLUS panel. Population structure analysis of this panel based on the TaBW35K SNP array revealed an increased genetic diversity compared to 632 landraces genotyped in an earlier study and 17 high-quality sequenced wheat accessions. The additional genetic diversity found here mostly originated from Turkish, Iranian and Pakistani landraces. We characterized the LandracePLUS panel for resistance to ten diverse isolates of the fungal pathogen powdery mildew. Performing genome-wide association studies and dividing the panel further by a targeted subsetting approach for accessions of distinct geographical origin, we detected several known and already cloned genes, including the Pm2a gene. In addition, we identified 22 putatively novel powdery mildew resistance loci that represent useful sources for resistance breeding and for research on the mildew-wheat pathosystem. Our study shows the value of assembling trait-customized collections and utilizing a diverse range of pathogen races to detect novel loci. It further highlights the importance of integrating landraces of different geographical origins into future diversity studies.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Resistencia a la Enfermedad/genética , Triticum/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Pan , Irán , Variación Genética , Enfermedades de las Plantas/genética
3.
Mol Plant Microbe Interact ; 37(3): 264-276, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37934013

RESUMEN

Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal wheat pathogen. Some wheat genotypes contain powdery mildew resistance (Pm) genes encoding immune receptors that recognize specific fungal-secreted effector proteins, defined as avirulence (Avr) factors. Identifying Avr factors is vital for understanding the mechanisms, functioning, and durability of wheat resistance. Here, we present AvrXpose, an approach to identify Avr genes in Bgt by generating gain-of-virulence mutants on Pm genes. We first identified six Bgt mutants with gain of virulence on Pm3b and Pm3c. They all had point mutations, deletions or insertions of transposable elements within the corresponding AvrPm3b2/c2 gene or its promoter region. We further selected six mutants on Pm3a, aiming to identify the yet unknown AvrPm3a3 recognized by Pm3a, in addition to the previously described AvrPm3a2/f2. Surprisingly, Pm3a virulence in the obtained mutants was always accompanied by an additional gain of virulence on the unrelated tandem kinase resistance gene WTK4. No virulence toward 11 additional R genes tested was observed, indicating that the gain of virulence was specific for Pm3a and WTK4. Several independently obtained Pm3a-WTK4 mutants have mutations in Bgt-646, a gene encoding a putative, nonsecreted ankyrin repeat-containing protein. Gene expression analysis suggests that Bgt-646 regulates a subset of effector genes. We conclude that Bgt-646 is a common factor required for avirulence on both a specific nucleotide-binding leucine-rich repeat and a WTK immune receptor. Our findings suggest that, beyond effectors, another type of pathogen protein can control the race-specific interaction between powdery mildew and wheat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ascomicetos , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiología , Mutación/genética , Mutagénesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
4.
Database (Oxford) ; 20232023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971714

RESUMEN

Diploid A-genome wheat (einkorn wheat) presents a nutrition-rich option as an ancient grain crop and a resource for the improvement of bread wheat against abiotic and biotic stresses. Realizing the importance of this wheat species, reference-level assemblies of two einkorn wheat accessions were generated (wild and domesticated). This work reports an einkorn genome database that provides an interface to the cereals research community to perform comparative genomics, applied genetics and breeding research. It features queries for annotated genes, the use of a recent genome browser release, and the ability to search for sequence alignments using a modern BLAST interface. Other features include a comparison of reference einkorn assemblies with other wheat cultivars through genomic synteny visualization and an alignment visualization tool for BLAST results. Altogether, this resource will help wheat research and breeding. Database URL  https://wheat.pw.usda.gov/GG3/pangenome.


Asunto(s)
Genoma de Planta , Triticum , Triticum/genética , Genoma de Planta/genética , Fitomejoramiento , Genómica/métodos , Estudios de Asociación Genética
5.
Commun Biol ; 6(1): 835, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573415

RESUMEN

Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticated T. monococcum accession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars.


Asunto(s)
Genómica , Triticum , Triticum/genética , Fenotipo , Grano Comestible/genética , Poliploidía
6.
Nature ; 620(7975): 830-838, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532937

RESUMEN

Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.


Asunto(s)
Producción de Cultivos , Genoma de Planta , Genómica , Triticum , Triticum/clasificación , Triticum/genética , Producción de Cultivos/historia , Historia Antigua , Secuenciación Completa del Genoma , Introgresión Genética , Hibridación Genética , Pan/historia , Genoma de Planta/genética , Centrómero/genética
8.
Nat Plants ; 7(3): 327-341, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33707738

RESUMEN

Crop breeding for resistance to pathogens largely relies on genes encoding receptors that confer race-specific immunity. Here, we report the identification of the wheat Pm4 race-specific resistance gene to powdery mildew. Pm4 encodes a putative chimeric protein of a serine/threonine kinase and multiple C2 domains and transmembrane regions, a unique domain architecture among known resistance proteins. Pm4 undergoes constitutive alternative splicing, generating two isoforms with different protein domain topologies that are both essential for resistance function. Both isoforms interact and localize to the endoplasmatic reticulum when co-expressed. Pm4 reveals additional diversity of immune receptor architecture to be explored for breeding and suggests an endoplasmatic reticulum-based molecular mechanism of Pm4-mediated race-specific resistance.


Asunto(s)
Empalme Alternativo , Ascomicetos/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/fisiología , Proteínas Quinasas/fisiología , Triticum/genética , Triticum/microbiología , Clonación Molecular , Resistencia a la Enfermedad/genética , Evolución Molecular , Silenciador del Gen , Genes de Plantas , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Recombinación Genética , Triticum/enzimología
9.
Nat Genet ; 53(4): 564-573, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33737754

RESUMEN

Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma de Planta , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Secale/genética , Triticum/genética , Adaptación Fisiológica/genética , Productos Agrícolas/genética , Productos Agrícolas/inmunología , Regulación de la Expresión Génica de las Plantas , Introgresión Genética , Cariotipo , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Secale/inmunología , Estrés Fisiológico
10.
Front Neurosci ; 13: 1258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824253

RESUMEN

The pathological aggregation of tau characterizes a set of neurodegenerative diseases collectively referred to as tauopathies. Recent studies using cellular and animal models have suggested that tau pathology progresses by trans-cellular propagation. The process of propagation is mediated by certain species of extracellular tau, which are taken up by recipient cells and serve as a seed for tau aggregation. Tau propagation is currently one of the most active areas of research in dementia. Previous efforts to identify the specific tau molecules involved in propagation have suggested that multiple forms of tau with different molecular weights derived from recombinant tau or brain lysates exert seeding activity. Nonetheless, the molecular characteristics of the "extracellular" seed-competent tau as well as its release mechanisms remain to be elucidated. Given that tau is physiologically released into the extracellular space, it is critical to distinguish seed-competent tau from normal monomeric tau. Utilizing biosensor cells expressing P301S mutant tau fused to CFP/YFP, here we discriminated between seed-competent tau and inert monomer tau released from HEK293 cells. By analyzing the size-exclusion fractions of the media, we found that seed-competent tau was enriched in high molecular weight fractions of >2,000 kDa, while the majority of soluble tau in the media positively detected by ELISA was in low molecular weight fractions. We also found that lysosomal stress not only increased Ca2+-dependent release of seed-competent tau but also altered its molecular size. Inhibiting lysosomal exocytosis specifically decreased release of seed-competent tau without influencing total tau. These data underscore the differential response of seed-competent tau and inert tau to lysosomal stress and indicates the presence of distinct release mechanisms via lysosomes.

12.
Pflege ; 23(5): 331-8, 2010 Oct.
Artículo en Alemán | MEDLINE | ID: mdl-20886451

RESUMEN

Since the demand of professional outpatient care increases steadily, the general conditions of care need to be focussed. In particular, the structural conditions of the clients' homes are of considerable importance as they constrain the work of nurses and may reduce quality of care. Thus, the aim of this investigation is to identify the impact of structural conditions on professional care and strategies used by home care nurses to compensate structural barriers. The explorative nature of this topic required a qualitative study design, consisting of ten intensive interviews with home care nurses. Derived from Mayring's approach of systematic data interpretation, a process model for data analysis was developed and adapted to the research question. Eventually, six categories were identified which depict the impact of structural conditions on quality of care. Main aspects for quality of care were found in the working process, and that in turn affects the outcome in terms of high-quality home care. Moreover, five categories were evolved that describe strategies of home care nurses to compensate structural constraints and thus ensure professional care. Essential strategies were ascertained such as applying the nursing process, nurses offering advisory service to clients and work facilitation through auxiliary techniques.


Asunto(s)
Arquitectura y Construcción de Instituciones de Salud , Servicios de Atención de Salud a Domicilio/normas , Garantía de la Calidad de Atención de Salud/normas , Medio Social , Actitud del Personal de Salud , Investigación en Enfermería Clínica , Alemania , Humanos , Movimiento y Levantamiento de Pacientes , Evaluación de Necesidades , Administración de la Seguridad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA