Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (206)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38738890

RESUMEN

Synthetic vascular grafts overcome some challenges of allografts, autografts, and xenografts but are often more rigid and less compliant than the native vessel into which they are implanted. Compliance matching with the native vessel is emerging as a key property for graft success. The current gold standard for assessing vessel compliance involves the vessel's excision and ex vivo biaxial mechanical testing. We developed an in vivo method to assess venous compliance and distensibility that better reflects natural physiology and takes into consideration the impact of a pressure change caused by flowing blood and by any morphologic changes present. This method is designed as a survival procedure, facilitating longitudinal studies while potentially reducing the need for animal use. Our method involves injecting a 20 mL/kg saline bolus into the venous vasculature, followed by the acquisition of pre and post bolus 3D angiograms to observe alterations induced by the bolus, concurrently with intravascular pressure measurements in target regions. We are then able to measure the circumference and the cross-sectional area of the vessel pre and post bolus. With these data and the intravascular pressure, we are able to calculate the compliance and distensibility with specific equations. This method was used to compare the inferior vena cava's compliance and distensibility in native unoperated sheep to the conduit of sheep implanted with a long-term expanded polytetrafluorethylene (PTFE) graft. The native vessel was found to be more compliant and distensible than the PTFE graft at all measured locations. We conclude that this method safely provides in vivo measurements of vein compliance and distensibility.


Asunto(s)
Vena Cava Inferior , Animales , Vena Cava Inferior/fisiología , Vena Cava Inferior/diagnóstico por imagen , Vena Cava Inferior/cirugía , Ovinos , Angiografía/métodos , Imagenología Tridimensional/métodos , Modelos Animales
2.
Sci Transl Med ; 12(537)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238576

RESUMEN

We developed a tissue-engineered vascular graft (TEVG) for use in children and present results of a U.S. Food and Drug Administration (FDA)-approved clinical trial evaluating this graft in patients with single-ventricle cardiac anomalies. The TEVG was used as a Fontan conduit to connect the inferior vena cava and pulmonary artery, but a high incidence of graft narrowing manifested within the first 6 months, which was treated successfully with angioplasty. To elucidate mechanisms underlying this early stenosis, we used a data-informed, computational model to perform in silico parametric studies of TEVG development. The simulations predicted early stenosis as observed in our clinical trial but suggested further that such narrowing could reverse spontaneously through an inflammation-driven, mechano-mediated mechanism. We tested this unexpected, model-generated hypothesis by implanting TEVGs in an ovine inferior vena cava interposition graft model, which confirmed the prediction that TEVG stenosis resolved spontaneously and was typically well tolerated. These findings have important implications for our translational research because they suggest that angioplasty may be safely avoided in patients with asymptomatic early stenosis, although there will remain a need for appropriate medical monitoring. The simulations further predicted that the degree of reversible narrowing can be mitigated by altering the scaffold design to attenuate early inflammation and increase mechano-sensing by the synthetic cells, thus suggesting a new paradigm for optimizing next-generation TEVGs. We submit that there is considerable translational advantage to combined computational-experimental studies when designing cutting-edge technologies and their clinical management.


Asunto(s)
Prótesis Vascular , Constricción Patológica , Ingeniería de Tejidos , Animales , Niño , Constricción Patológica/terapia , Humanos , Ovinos , Estados Unidos
3.
J Cardiovasc Transl Res ; 10(2): 128-138, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28097523

RESUMEN

Patients who undergo implantation of a tissue-engineered vascular graft (TEVG) for congenital cardiac anomalies are monitored with echocardiography, followed by magnetic resonance imaging or angiography when indicated. While these methods provide data regarding the lumen, minimal information regarding neotissue formation is obtained. Intravascular ultrasound (IVUS) has previously been used in a variety of conditions to evaluate the vessel wall. The purpose of this study was to evaluate the utility of IVUS for evaluation of TEVGs in our ovine model. Eight sheep underwent implantation of TEVGs either unseeded or seeded with bone marrow-derived mononuclear cells. Angiography, IVUS, and histology were directly compared. Endothelium, tunica media, and graft were identifiable on IVUS and histology at multiple time points. There was strong agreement between IVUS and angiography for evaluation of luminal diameter. IVUS offers a valuable tool to evaluate the changes within TEVGs, and clinical translation of this application is warranted.


Asunto(s)
Bioprótesis , Implantación de Prótesis Vascular/instrumentación , Prótesis Vascular , Trasplante de Médula Ósea , Ingeniería de Tejidos/métodos , Andamios del Tejido , Ultrasonografía Intervencional , Vena Cava Inferior/cirugía , Animales , Implantación de Prótesis Vascular/efectos adversos , Células Cultivadas , Modelos Animales , Flebografía , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/patología , Diseño de Prótesis , Oveja Doméstica , Factores de Tiempo , Vena Cava Inferior/diagnóstico por imagen , Vena Cava Inferior/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...