Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(7): 1842-1855, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38918469

RESUMEN

The viral nuclear egress complex (NEC) allows herpesvirus capsids to escape from the nucleus without compromising the nuclear envelope integrity. The NEC lattice assembles on the inner nuclear membrane and mediates the budding of nascent nucleocapsids into the perinuclear space and their subsequent release into the cytosol. Its essential role makes it a potent antiviral target, necessitating structural information in the context of a cellular infection. Here we determined structures of NEC-capsid interfaces in situ using electron cryo-tomography, showing a substantial structural heterogeneity. In addition, while the capsid is associated with budding initiation, it is not required for curvature formation. By determining the NEC structure in several conformations, we show that curvature arises from an asymmetric assembly of disordered and hexagonally ordered lattice domains independent of pUL25 or other viral capsid vertex components. Our results advance our understanding of the mechanism of nuclear egress in the context of a living cell.


Asunto(s)
Cápside , Núcleo Celular , Microscopía por Crioelectrón , Membrana Nuclear , Liberación del Virus , Núcleo Celular/metabolismo , Núcleo Celular/virología , Humanos , Membrana Nuclear/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Nucleocápside/metabolismo , Tomografía con Microscopio Electrónico , Proteínas Virales/metabolismo , Proteínas Virales/genética , Herpesviridae/fisiología , Herpesviridae/genética
2.
Bio Protoc ; 13(14): e4723, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37497446

RESUMEN

Microtubule structure is commonly investigated using single-particle analysis (SPA) or subtomogram averaging (STA), whose main objectives are to gather high-resolution information on the αß-tubulin heterodimer and on its interactions with neighboring molecules within the microtubule lattice. The maps derived from SPA approaches usually delineate a continuous organization of the αß-tubulin heterodimer that alternate regularly head-to-tail along protofilaments, and that share homotypic lateral interactions between monomers (α-α, ß-ß), except at one unique region called the seam, made of heterotypic ones (α-ß, ß-α). However, this textbook description of the microtubule lattice has been challenged over the years by several studies that revealed the presence of multi-seams in microtubules assembled in vitro from purified tubulin. To analyze in deeper detail their intrinsic structural heterogeneity, we have developed a segmented subtomogram averaging (SSTA) strategy on microtubules decorated with kinesin motor-domains that bind every αß-tubulin heterodimer. Individual protofilaments and microtubule centers are modeled, and sub-volumes are extracted at every kinesin motor domain position to obtain full subtomogram averages of the microtubules. The model is divided into shorter segments, and subtomogram averages of each segment are calculated using the main parameters of the full-length microtubule settings as a template. This approach reveals changes in the number and location of seams within individual microtubules assembled in vitro from purified tubulin and in Xenopus egg cytoplasmic extracts. Key features This protocol builds upon the method developed by J.M. Heumann to perform subtomogram averages of microtubules and extends it to divide them into shorter segments. Microtubules are decorated with kinesin motor-domains to determine the underlying organization of its constituent αß-tubulin heterodimers. The SSTA approach allows analysis of the structural heterogeneity of individual microtubules and reveals multi-seams and changes in their number and location within their shaft. Graphical overview.

3.
Elife ; 112022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503602

RESUMEN

Microtubules are tubes of about 25 nm in diameter that are critically involved in a variety of cellular functions, including motility, compartmentalization, and division. They are considered as pseudo-helical polymers whose constituent αß-tubulin heterodimers share lateral homotypic interactions, except at one unique region called the seam. Here, we used a segmented sub-tomogram averaging strategy to reassess this paradigm and analyze the organization of the αß-tubulin heterodimers in microtubules assembled from purified porcine brain tubulin in the presence of GTP and GMPCPP, and in Xenopus egg cytoplasmic extracts. We find that in almost all conditions, microtubules incorporate variable protofilament and/or tubulin subunit helical-start numbers, as well as variable numbers of seams. Strikingly, the seam number and location vary along individual microtubules, generating holes of one to a few subunits in size within their lattices. Together, our results reveal that the formation of mixed and discontinuous microtubule lattices is an intrinsic property of tubulin that requires the formation of unique lateral interactions without longitudinal ones. They further suggest that microtubule assembly is tightly regulated in a cytoplasmic environment.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Animales , Porcinos , Tubulina (Proteína)/metabolismo , Xenopus laevis/metabolismo , Microtúbulos/metabolismo , Citoplasma/metabolismo , Encéfalo/metabolismo
4.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 572-586, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950014

RESUMEN

Structure-determination methods are needed to resolve the atomic details that underlie protein function. X-ray crystallography has provided most of our knowledge of protein structure, but is constrained by the need for large, well ordered crystals and the loss of phase information. The rapidly developing methods of serial femtosecond crystallography, micro-electron diffraction and single-particle reconstruction circumvent the first of these limitations by enabling data collection from nanocrystals or purified proteins. However, the first two methods also suffer from the phase problem, while many proteins fall below the molecular-weight threshold required for single-particle reconstruction. Cryo-electron tomography of protein nanocrystals has the potential to overcome these obstacles of mainstream structure-determination methods. Here, a data-processing scheme is presented that combines routines from X-ray crystallography and new algorithms that have been developed to solve structures from tomograms of nanocrystals. This pipeline handles image-processing challenges specific to tomographic sampling of periodic specimens and is validated using simulated crystals. The tolerance of this workflow to the effects of radiation damage is also assessed. The simulations indicate a trade-off between a wider tilt range to facilitate merging data from multiple tomograms and a smaller tilt increment to improve phase accuracy. Since phase errors, but not merging errors, can be overcome with additional data sets, these results recommend distributing the dose over a wide angular range rather than using a finer sampling interval to solve the protein structure.


Asunto(s)
Algoritmos , Cristalografía por Rayos X/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Nanopartículas/química , Proteínas/química , Simulación por Computador , Microscopía por Crioelectrón/métodos , Modelos Moleculares
5.
Proc Natl Acad Sci U S A ; 116(31): 15534-15539, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31320587

RESUMEN

Striated muscle enables movement in all animals by the contraction of myriads of sarcomeres joined end to end by the Z-bands. The contraction is due to tension generated in each sarcomere between overlapping arrays of actin and myosin filaments. At the Z-band, actin filaments from adjoining sarcomeres overlap and are cross-linked in a regular pattern mainly by the protein α-actinin. The Z-band is dynamic, reflected by the 2 regular patterns seen in transverse section electron micrographs; the so-called small-square and basketweave forms. Although these forms are attributed, respectively, to relaxed and actively contracting muscles, the basketweave form occurs in certain relaxed muscles as in the muscle studied here. We used electron tomography and subtomogram averaging to derive the 3D structure of the Z-band in the swimbladder sonic muscle of type I male plainfin midshipman fish (Porichthys notatus), into which we docked the crystallographic structures of actin and α-actinin. The α-actinin links run diagonally between connected pairs of antiparallel actin filaments and are oriented at an angle of about 25° away from the actin filament axes. The slightly curved and flattened structure of the α-actinin rod has a distinct fit into the map. The Z-band model provides a detailed understanding of the role of α-actinin in transmitting tension between actin filaments in adjoining sarcomeres.


Asunto(s)
Actinina/metabolismo , Sacos Aéreos/metabolismo , Proteínas de Peces/metabolismo , Peces/metabolismo , Contracción Muscular , Sarcómeros/metabolismo , Animales , Masculino
6.
Proc Natl Acad Sci U S A ; 116(28): 14309-14318, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31227607

RESUMEN

Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.


Asunto(s)
Anoctaminas/ultraestructura , Proteínas de Arabidopsis/ultraestructura , Canales de Calcio/ultraestructura , Oryza/ultraestructura , Conformación Proteica , Secuencia de Aminoácidos/genética , Anoctaminas/química , Anoctaminas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Microscopía por Crioelectrón , Citoplasma/genética , Espectrometría de Masas , Potenciales de la Membrana/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Presión Osmótica/fisiología , Agua/química
7.
Sci Rep ; 8(1): 2727, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426884

RESUMEN

Eukaryotic flagella are complex cellular extensions involved in many human diseases gathered under the term ciliopathies. Currently, detailed insights on flagellar structure come mostly from studies on protists. Here, cryo-electron tomography (cryo-ET) was performed on intact human spermatozoon tails and showed a variable number of microtubules in the singlet region (inside the end-piece). Inside the microtubule plus end, a novel left-handed interrupted helix which extends several micrometers was discovered. This structure was named Tail Axoneme Intra-Lumenal Spiral (TAILS) and binds directly to 11 protofilaments on the internal microtubule wall, in a coaxial fashion with the surrounding microtubule lattice. It leaves a gap over the microtubule seam, which was directly visualized in both singlet and doublet microtubules. We speculate that TAILS may stabilize microtubules, enable rapid swimming or play a role in controlling the swimming direction of spermatozoa.


Asunto(s)
Microscopía por Crioelectrón/métodos , Citoesqueleto/ultraestructura , Flagelos/ultraestructura , Microtúbulos/ultraestructura , Cola del Espermatozoide/ultraestructura , Espermatozoides/fisiología , Humanos , Masculino , Espermatozoides/ultraestructura
8.
J Struct Biol ; 194(1): 38-48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26821343

RESUMEN

Giardia lamblia is a protistan parasite that infects and colonizes the small intestine of mammals. It is widespread and particularly endemic in the developing world. Here we present a detailed structural study by 3-D negative staining and cryo-electron tomography of a unique Giardia organelle, the ventral disc. The disc is composed of a regular array of microtubules and associated sheets, called microribbons that form a large spiral, held together by a myriad of mostly unknown associated proteins. In a previous study we analyzed by cryo-electron tomography the central microtubule portion (here called disc body) of the ventral disc and found a large portion of microtubule associated inner (MIPs) and outer proteins (MAPs) that render these microtubules hyper-stable. With this follow-up study we expanded our 3-D analysis to different parts of the disc such as the ventral and dorsal areas of the overlap zone, as well as the outer disc margin. There are intrinsic location-specific characteristics in the composition of microtubule-associated proteins between these regions, as well as large differences between the overall architecture of microtubules and microribbons. The lateral packing of microtubule-microribbon complexes varies substantially, and closer packing often comes with contracted lateral tethers that seem to hold the disc together. It appears that the marginal microtubule-microribbon complexes function as outer, laterally contractible lids that may help the cell to clamp onto the intestinal microvilli. Furthermore, we analyzed length, quantity, curvature and distribution between different zones of the disc, which we found to differ from previous publications.


Asunto(s)
Microscopía por Crioelectrón/métodos , Citoesqueleto/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Giardia lamblia/ultraestructura , Microtúbulos/ultraestructura , Trofozoítos/ultraestructura , Animales , Giardia lamblia/citología , Giardia lamblia/fisiología , Giardiasis/parasitología , Interacciones Huésped-Parásitos , Imagenología Tridimensional/métodos , Intestinos/citología , Intestinos/parasitología , Intestinos/ultraestructura , Microvellosidades/parasitología , Microvellosidades/ultraestructura , Trofozoítos/fisiología
9.
Proc Natl Acad Sci U S A ; 111(2): 670-4, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379376

RESUMEN

We demonstrate that membrane proteins and phospholipids can self-assemble into polyhedral arrangements suitable for structural analysis. Using the Escherichia coli mechanosensitive channel of small conductance (MscS) as a model protein, we prepared membrane protein polyhedral nanoparticles (MPPNs) with uniform radii of ∼ 20 nm. Electron cryotomographic analysis established that these MPPNs contain 24 MscS heptamers related by octahedral symmetry. Subsequent single-particle electron cryomicroscopy yielded a reconstruction at ∼ 1-nm resolution, revealing a conformation closely resembling the nonconducting state. The generality of this approach has been addressed by the successful preparation of MPPNs for two unrelated proteins, the mechanosensitive channel of large conductance and the connexon Cx26, using a recently devised microfluidics-based free interface diffusion system. MPPNs provide not only a starting point for the structural analysis of membrane proteins in a phospholipid environment, but their closed surfaces should facilitate studies in the presence of physiological transmembrane gradients, in addition to potential applications as drug delivery carriers or as templates for inorganic nanoparticle formation.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Canales Iónicos/química , Modelos Moleculares , Nanopartículas/química , Conformación Proteica , Microscopía por Crioelectrón , Técnicas Analíticas Microfluídicas
10.
PLoS One ; 7(9): e43783, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984443

RESUMEN

Giardia lamblia is a flagellated, unicellular parasite of mammals infecting over one billion people worldwide. Giardia's two-stage life cycle includes a motile trophozoite stage that colonizes the host small intestine and an infectious cyst form that can persist in the environment. Similar to many eukaryotic cells, Giardia contains several complex microtubule arrays that are involved in motility, chromosome segregation, organelle transport, maintenance of cell shape and transformation between the two life cycle stages. Giardia trophozoites also possess a unique spiral microtubule array, the ventral disc, made of approximately 50 parallel microtubules and associated microribbons, as well as a variety of associated proteins. The ventral disc maintains trophozoite attachment to the host intestinal epithelium. With the help of a combined SEM/microtome based slice and view method called 3View® (Gatan Inc., Pleasanton, CA), we present an entire trophozoite cell reconstruction and describe the arrangement of the major cytoskeletal elements. To aid in future analyses of disc-mediated attachment, we used electron-tomography of freeze-substituted, plastic-embedded trophozoites to explore the detailed architecture of ventral disc microtubules and their associated components. Lastly, we examined the disc microtubule array in three dimensions in unprecedented detail using cryo-electron tomography combined with internal sub-tomogram volume averaging of repetitive domains. We discovered details of protein complexes stabilizing microtubules by attachment to their inner and outer wall. A unique tri-laminar microribbon structure is attached vertically to the disc microtubules and is connected to neighboring microribbons via crossbridges. This work provides novel insight into the structure of the ventral disc microtubules, microribbons and associated proteins. Knowledge of the components comprising these structures and their three-dimensional organization is crucial toward understanding how attachment via the ventral disc occurs in vivo.


Asunto(s)
Giardia lamblia/ultraestructura , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Complejos Multiproteicos/ultraestructura , Proteínas Protozoarias/ultraestructura , Giardia lamblia/citología , Giardia lamblia/metabolismo , Procesamiento de Imagen Asistido por Computador , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/metabolismo , Reproducibilidad de los Resultados , Tomografía , Tubulina (Proteína)/química
11.
J Struct Biol ; 175(3): 288-99, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21616153

RESUMEN

Cryo-electron tomography provides 3D imaging of frozen hydrated biological samples with nanometer resolution. Reconstructed volumes suffer from low signal-to-noise-ratio (SNR)(1) and artifacts caused by systematically missing tomographic data. Both problems can be overcome by combining multiple subvolumes with varying orientations, assuming they contain identical structures. Clustering (unsupervised classification) is required to ensure or verify population homogeneity, but this process is complicated by the problems of poor SNR and missing data, the factors that led to consideration of multiple subvolumes in the first place. Here, we describe a new approach to clustering and variance mapping in the face of these difficulties. The combined subvolume is taken as an estimate of the true subvolume, and the effect of missing data is computed for individual subvolumes. Clustering and variance mapping then proceed based on differences between expected and observed subvolumes. We show that this new method is faster and more accurate than two current, widely used techniques.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Análisis de Componente Principal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...