Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chromosome Res ; 21(2): 101-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23580138

RESUMEN

The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.


Asunto(s)
Autoantígenos/genética , Proteínas Cromosómicas no Histona/genética , Histonas/genética , Autoantígenos/metabolismo , Centrómero , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Humanos , Cinetocoros , Esclerodermia Sistémica/genética , Terminología como Asunto
2.
Science ; 294(5549): 2181-6, 2001 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-11739961

RESUMEN

Little is known about the dynamics of chromosomes in interphase nuclei. By tagging four chromosomal regions with a green fluorescent protein fusion to lac repressor, we monitored the movement and subnuclear position of specific sites in the yeast genome, sampling at short time intervals. We found that early and late origins of replication are highly mobile in G1 phase, frequently moving at or faster than 0.5 micrometers/10 seconds, in an energy-dependent fashion. The rapid diffusive movement of chromatin detected in G1 becomes constrained in S phase through a mechanism dependent on active DNA replication. In contrast, telomeres and centromeres provide replication-independent constraint on chromatin movement in both G1 and S phases.


Asunto(s)
Cromatina/fisiología , Cromosomas Fúngicos/fisiología , Interfase , Saccharomyces cerevisiae/fisiología , Adenosina Trifosfato/metabolismo , Núcleo Celular/fisiología , Centrómero/fisiología , Replicación del ADN , ADN de Hongos/biosíntesis , Fase G1 , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Películas Cinematográficas , Mutación , Membrana Nuclear/fisiología , Origen de Réplica , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Telómero/fisiología
3.
Trends Cell Biol ; 11(12): 519-25, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11719059

RESUMEN

The positioning of chromosomal domains in the interphase nucleus is proposed to facilitate gene regulation in simple cells such as yeasts and to coordinate patterns of gene expression and activation of origins of replication during cell differentiation in complex organisms. Over the past 10-12 years, detailed information on the organization of interphase chromosomes has accumulated from three-dimensional microscopy of fixed cells labeled by in situ hybridization and immunofluorescence techniques. Recently, time-lapse fluorescence microscopy of GFP-tagged domains has shown that interphase chromatin can be highly dynamic, moving distances >0.5 microm within seconds. Novel fluorescence techniques show that most nuclear proteins are also highly mobile. Both the rapid oscillations of chromatin and long-range movements of chromosomes suggest new mechanisms for spatial and temporal control of transcription and other nuclear events.


Asunto(s)
Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromosomas/metabolismo , Microscopía Fluorescente/métodos , Telómero/ultraestructura , Animales , Centrómero/metabolismo , Centrómero/ultraestructura , Cromatina/metabolismo , Cromatina/ultraestructura , Cromosomas/ultraestructura , Replicación del ADN/fisiología , Humanos , Interfase/fisiología , Movimiento/fisiología , Ribosomas/metabolismo , Ribosomas/ultraestructura , Telómero/metabolismo , Factores de Tiempo
4.
J Cell Biol ; 152(2): 385-400, 2001 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-11266454

RESUMEN

We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)-tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus.


Asunto(s)
Ciclo Celular/fisiología , Núcleo Celular/genética , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Núcleo Celular/ultraestructura , Replicación del ADN , Fase G1 , Fase G2 , Proteínas Fluorescentes Verdes , Hibridación Fluorescente in Situ , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Membrana Nuclear/fisiología , Proteínas Recombinantes de Fusión/análisis , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/ultraestructura
5.
Curr Biol ; 10(7): 373-82, 2000 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-10753745

RESUMEN

BACKGROUND: During the mating pheromone response in budding yeast, activation of a mitogen-activated protein kinase (MAP kinase) cascade results in well-characterized changes in cytoskeletal organization and gene expression. Spatial reorganization of genes within the nucleus has been documented during cell-type differentiation in mammalian cells, but no information was previously available on the morphology of the yeast nucleus during the major transcriptional reprogramming that accompanies zygote formation. RESULTS: We find that in response to mating pheromone, budding yeast nuclei assume an unusual dumbbell shape, reflecting a spatial separation of chromosomal and nucleolar domains. Within the chromosomal domain, telomeric foci persist and maintain their associated complement of Sir proteins. The nucleolus, on the other hand, assumes a novel cup-shaped morphology and a position distal to the mating projection tip. Although microtubules are required for this orientation with respect to the projection tip, neither microtubules nor actin polymerization are necessary for the observed changes in nuclear shape. We find that activation of the pheromone-response MAP kinase pathway by ectopic expression of STE4 or STE11 leads to identical nuclear and nucleolar reorganization in the absence of pheromone. Mutation of downstream effector MAP kinases Fus3p and Kss1p, or of the transcriptional regulator Ste12p, blocks nuclear shape changes, whereas overexpression of Ste12p promotes dumbbell-shaped nuclei in the absence of pheromone. CONCLUSIONS: Nuclear remodeling occurs when the MAP kinase cascade is activated by yeast pheromone, but it is independent of the cytoskeletal reorganization regulated by the same signaling pathway. Activation of the Ste12p transcription factor is necessary, and may be sufficient, for the changes in nuclear structure that coincide with developmentally significant changes in gene expression.


Asunto(s)
Núcleo Celular/ultraestructura , Sistema de Señalización de MAP Quinasas , Feromonas/farmacología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Proteínas de Schizosaccharomyces pombe , Factores de Transcripción , Cigoto/fisiología , Actinas/metabolismo , Nucléolo Celular/ultraestructura , Proteínas Fúngicas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Telómero/ultraestructura
6.
Mol Cell Biol ; 19(2): 1226-41, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9891057

RESUMEN

Nuclear extracts from Saccharomyces cerevisiae cells synchronized in S phase support the semiconservative replication of supercoiled plasmids in vitro. We examined the dependence of this reaction on the prereplicative complex that assembles at yeast origins and on S-phase kinases that trigger initiation in vivo. We found that replication in nuclear extracts initiates independently of the origin recognition complex (ORC), Cdc6p, and an autonomously replicating sequence (ARS) consensus. Nonetheless, quantitative density gradient analysis showed that S- and M-phase nuclear extracts consistently promote semiconservative DNA replication more efficiently than G1-phase extracts. The observed semiconservative replication is compromised in S-phase nuclear extracts deficient for the Cdk1 kinase (Cdc28p) but not in extracts deficient for the Cdc7p kinase. In a cdc4-1 G1-phase extract, which accumulates high levels of the specific Clb-Cdk1 inhibitor p40(SIC1), very low levels of semiconservative DNA replication were detected. Recombinant Clb5-Cdc28 restores replication in a cdc28-4 S-phase extract yet fails to do so in the cdc4-1 G1-phase extract. In contrast, the addition of recombinant Xenopus CycB-Cdc2, which is not sensitive to inhibition by p40(SIC1), restores efficient replication to both extracts. Our results suggest that in addition to its well-characterized role in regulating the origin-specific prereplication complex, the Clb-Cdk1 complex modulates the efficiency of the replication machinery itself.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Replicación del ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Animales , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Ciclina B/genética , Replicación del ADN/genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fase G1 , Técnicas In Vitro , Mutación , Complejo de Reconocimiento del Origen , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Xenopus
7.
J Mol Biol ; 281(4): 631-49, 1998 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-9710536

RESUMEN

We describe the preparation of nuclear extracts from yeast cells synchronised in S-phase that support the aphidicolin-sensitive, semi-conservative replication of primer-free, supercoiled plasmid in vitro. This is monitored by one and two-dimensional gel electrophoresis of replication intermediates that have incorporated [alpha-32P]dATP, by the conversion of methylated template DNA into a hemi-methylated or DpnI-resistant form, and by substitution of dTTP with the heavy derivative BrdUTP, which results in a shift in density corresponding to complete second strand synthesis. We demonstrate dependence on DNA pol delta and the pol alpha/primase complex, and are able to detect putative Okazaki fragments under ATP-limiting conditions. In contrast to the semi-conservative replication of supercoiled plasmid, linear or open-circular templates incorporate labelled nucleotides through repair synthesis that produces no significant density shift on CsCl gradients. Consistent with a true replication reaction we find that semi-conservative replication of plasmid DNA is stimulated in S-phase relative to G1-phase nuclear extracts, and is independent of the recombination-promoting factor Rad52p. Using this novel system we demonstrate that semi-conservative replication, but not polymerase activity per se, requires the activity of the DNA helicase encoded by DNA2.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Núcleo Celular/metabolismo , ADN Helicasas , Replicación del ADN/genética , ADN Superhelicoidal/metabolismo , Saccharomyces cerevisiae/enzimología , Afidicolina/farmacología , Ciclo Celular/fisiología , Centrifugación por Gradiente de Densidad , Metilación de ADN , ADN Polimerasa I/metabolismo , ADN Polimerasa III/metabolismo , ADN Superhelicoidal/ultraestructura , Nucleótidos de Desoxiadenina/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Electroforesis en Gel Bidimensional , Microscopía Electrónica , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Plásmidos/genética , Plásmidos/ultraestructura , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...