Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38607126

RESUMEN

InAs quantum wells (QWs) are promising material systems due to their small effective mass, narrow bandgap, strong spin-orbit coupling, large g-factor, and transparent interface to superconductors. Therefore, they are promising candidates for the implementation of topological superconducting states. Despite this potential, the growth of InAs QWs with high crystal quality and well-controlled morphology remains challenging. Adding an overshoot layer at the end of the metamorphic buffer layer, i.e., a layer with a slightly larger lattice constant than the active region of the device, helps to overcome the residual strain and provides optimally relaxed lattice parameters for the QW. In this work, we systematically investigated the influence of overshoot layer thickness on the morphological, structural, strain, and transport properties of undoped InAs QWs on GaAs(100) substrates. Transmission electron microscopy reveals that the metamorphic buffer layer, which includes the overshoot layer, provides a misfit dislocation-free InAs QW active region. Moreover, the residual strain in the active region is compressive in the sample with a 200 nm-thick overshoot layer but tensile in samples with an overshoot layer thicker than 200 nm, and it saturates to a constant value for overshoot layer thicknesses above 350 nm. We found that electron mobility does not depend on the crystallographic directions. A maximum electron mobility of 6.07 × 105 cm2/Vs at 2.6 K with a carrier concentration of 2.31 × 1011 cm-2 in the sample with a 400 nm-thick overshoot layer has been obtained.

2.
J Sci Food Agric ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947767

RESUMEN

BACKGROUND: Sensors that are sensitive to volatile organic compounds, and thus able to monitor the conservation state of food, are precious because they work non-destructively and allow avoiding direct contact with the food, ensuring hygienic conditions. In particular, the monitoring of rancidity would solve a widespread issue in food storage. RESULTS: The sensor discussed here is produced utilizing a novel three-dimensional arrangement of graphene, which is grown on a crystalline silicon carbide wafer previously porousified by chemical etching. This approach allows a very high surface-to-volume ratio. Furthermore, the structure of the sensor surface features a large number of edges, dangling bounds, and active sites, which make the sensor, on a chemically robust skeleton, chemically active, particularly to hydrogenated molecules. The interaction of the sensor with such compounds is read out by measuring the sensor resistance in a four-wire configuration. The sensor performance has been assessed on three hazelnut samples: sound, spoiled, and stink bug hazelnuts. A resistance variation of about ∆R = 0.13 ± 0.02 Ω between sound and damaged hazelnuts has been detected. CONCLUSIONS: Our measurements confirm the ability of the sensor to discriminate between sound and damaged hazelnuts. The sensor signal is stable for days, providing the possibility to use this sensor for the monitoring of the storage state of fats and foods in general. © 2023 Society of Chemical Industry.

3.
Nano Lett ; 22(21): 8502-8508, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36285780

RESUMEN

We report nonreciprocal dissipation-less transport in single ballistic InSb nanoflag Josephson junctions. Applying an in-plane magnetic field, we observe an inequality in supercurrent for the two opposite current propagation directions. Thus, these devices can work as Josephson diodes, with dissipation-less current flowing in only one direction. For small fields, the supercurrent asymmetry increases linearly with external field, and then it saturates as the Zeeman energy becomes relevant, before it finally decreases to zero at higher fields. The effect is maximum when the in-plane field is perpendicular to the current vector, which identifies Rashba spin-orbit coupling as the main symmetry-breaking mechanism. While a variation in carrier concentration in these high-quality InSb nanoflags does not significantly influence the supercurrent asymmetry, it is instead strongly suppressed by an increase in temperature. Our experimental findings are consistent with a model for ballistic short junctions and show that the diode effect is intrinsic to this material.

4.
ACS Nano ; 16(3): 3538-3545, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35099941

RESUMEN

Setting up strong Josephson coupling in van der Waals materials in close proximity to superconductors offers several opportunities both to inspect fundamental physics and to develop cryogenic quantum technologies. Here we show evidence of Josephson coupling in a planar few-layer black phosphorus junction. The planar geometry allows us to probe the junction behavior by means of external gates, at different carrier concentrations. Clear signatures of Josephson coupling are demonstrated by measuring supercurrent flow through the junction at milli-Kelvin temperatures. Manifestation of a Fraunhofer pattern with a transverse magnetic field is also reported, confirming the Josephson coupling. These findings represent evidence of proximity Josephson coupling in a planar junction based on a van der Waals material beyond graphene and will expedite further studies, exploiting the peculiar properties of exfoliated black phosphorus thin flakes.

5.
ACS Appl Nano Mater ; 4(6): 5825-5833, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34308268

RESUMEN

High-quality heteroepitaxial two-dimensional (2D) InSb layers are very difficult to realize because of the large lattice mismatch with other widespread semiconductor substrates. A way around this problem is to grow free-standing 2D InSb nanostructures on nanowire (NW) stems, thanks to the capability of NWs to efficiently relax elastic strain along the sidewalls when lattice-mismatched semiconductor systems are integrated. In this work, we optimize the morphology of free-standing 2D InSb nanoflags (NFs). In particular, robust NW stems, optimized growth parameters, and the use of reflection high-energy electron diffraction (RHEED) to precisely orient the substrate for preferential growth are implemented to increase the lateral size of the 2D InSb NFs. Transmission electron microscopy (TEM) analysis of these NFs reveals defect-free zinc blend crystal structure, stoichiometric composition, and relaxed lattice parameters. The resulting NFs are large enough to fabricate Hall-bar contacts with suitable length-to-width ratio enabling precise electrical characterization. An electron mobility of ∼29 500 cm2/(V s) is measured, which is the highest value reported for free-standing 2D InSb nanostructures in literature. We envision the use of 2D InSb NFs for fabrication of advanced quantum devices.

6.
Nanoscale Adv ; 3(20): 5841-5852, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36132665

RESUMEN

Organic functionalization of graphene is successfully performed via 1,3-dipolar cycloaddition of azomethine ylide in the liquid phase. The comparison between 1-methyl-2-pyrrolidinone and N,N-dimethylformamide as dispersant solvents, and between sonication and homogenization as dispersion techniques, proves N,N-dimethylformamide and homogenization as the most effective choice. The functionalization of graphene nanosheets and reduced graphene oxide is confirmed using different techniques. Among them, energy-dispersive X-ray spectroscopy allows to map the pyrrolidine ring of the azomethine ylide on the surface of functionalized graphene, while micro-Raman spectroscopy detects new features arising from the functionalization, which are described in agreement with the power spectrum obtained from ab initio molecular dynamics simulation. Moreover, X-ray photoemission spectroscopy of functionalized graphene allows the quantitative elemental analysis and the estimation of the surface coverage, showing a higher degree of functionalization for reduced graphene oxide. This more reactive behavior originates from the localization of partial charges on its surface due to the presence of oxygen defects, as shown by the simulation of the electrostatic features. Functionalization of graphene using 1,3-dipolar cycloaddition is shown to be a significant step towards the controlled synthesis of graphene-based complex structures and devices at the nanoscale.

8.
Nanotechnology ; 31(27): 275708, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32235041

RESUMEN

Since its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this drawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP. In detail, the behavior of the Ni-functionalized material exposed to ambient conditions in the dark is accurately studied by Transmission Electron Microscopy (TEM), Raman Spectroscopy, and high resolution x-ray Photoemission and Absorption Spectroscopy. These techniques provide a morphological and quantitative insight of the oxidation process taking place at the surface of the bP flakes. In the presence of Ni nanoparticles (NPs), the decay time of 2D bP to phosphorus oxides is more than three time slower compared to pristine bP, demonstrating an improved structural stability within 20 months of observation.

9.
Chem Mater ; 31(14): 5075-5080, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31656368

RESUMEN

The burgeoning interest in two-dimensional (2D) black phosphorus (bP) contributes to the expansion of its applications in numerous fields. In the present study, 2D bP is used as a support for homogeneously dispersed palladium nanoparticles directly grown on it by a wet chemical process. Electron energy loss spectroscopy-scanning transmission electron microscopy analysis evidences a strong interaction between palladium and P atoms of the bP nanosheets. A quantitative evaluation of this interaction comes from the X-ray absorption spectroscopy measurements that show a very short Pd-P distance of 2.26 Å, proving for the first time the existence of an unprecedented Pd-P coordination bond of a covalent nature. Additionally, the average Pd-P coordination number of about 1.7 reveals that bP acts as a polydentate phosphine ligand toward the surface of the Pd atoms of the nanoparticles, thus preventing their agglomeration and inferring with structural stability. These unique properties result in a superior performance in the catalytic hydrogenation of chloronitroarenes to chloroanilines, where a higher chemoselectivity in comparison to other heterogeneous catalyst based on palladium has been observed.

10.
Eur J Inorg Chem ; 2019(11-12): 1476-1494, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31007576

RESUMEN

Phosphorene, the 2D material derived from black phosphorus, has recently attracted a lot of interest for its properties, suitable for applications in materials science. The physical features and the prominent chemical reactivity on its surface render this nanolayered substrate particularly promising for electrical and optoelectronic applications. In addition, being a new potential ligand for metals, it opens the way for a new role of the inorganic chemistry in the 2D world, with special reference to the field of catalysis. The aim of this review is to summarize the state of the art in this subject and to present our most recent results in the preparation, functionalization, and use of phosphorene and its decorated derivatives. We discuss several key points, which are currently under investigation: the synthesis, the characterization by theoretical calculations, the high pressure behavior of black phosphorus, as well as its decoration with nanoparticles and encapsulation in polymers. Finally, device fabrication and electrical transport measurements are overviewed on the basis of recent literature and the new results collected in our laboratories.

11.
Chem Mater ; 30(6): 2036-2048, 2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29887671

RESUMEN

Black phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) toward both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes (bPn) exhibit a significantly improved stability. The new materials have been prepared by different synthetic paths including: (i) the mixing of conventionally liquid-phase exfoliated bP (in dimethyl sulfoxide, DMSO) with poly(methyl methacrylate) (PMMA) solution; (ii) the direct exfoliation of bP in a polymeric solution; (iii) the in situ radical polymerization after exfoliating bP in the liquid monomer (methyl methacrylate, MMA). This last methodology concerns the preparation of stable suspensions of bPn-MMA by sonication-assisted liquid-phase exfoliation (LPE) of bP in the presence of MMA followed by radical polymerization. The hybrids characteristics have been compared in order to evaluate the bP dispersion and the effectiveness of the bPn interfacial interactions with polymer chains aimed at their long-term environmental stabilization. The passivation of the bPn is particularly effective when the hybrid material is prepared by in situ polymerization. By using this synthetic methodology, the nanoflakes, even if with a gradient of dispersion (size of aggregates), preserve their chemical structure from oxidation (as proved by both Raman and 31P-solid state NMR studies) and are particularly stable to air and UV light exposure. The feasibility of this approach, capable of efficiently exfoliating bP while protecting the bPn, has been then verified by using different vinyl monomers (styrene and N-vinylpyrrolidone), thus obtaining hybrids where the nanoflakes are embedded in polymer matrices with a variety of intriguing thermal, mechanical, and solubility characteristics.

12.
Nanoscale ; 10(21): 10079-10086, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29781026

RESUMEN

Every time a chemical reaction occurs, an energy exchange between reactants and the environment takes place, which is defined as the enthalpy of the reaction. During the last few decades, research has resulted in an increasing number of devices at the micro- or nano-scale. Sensors, catalyzers, and energy storage systems are more and more developed as nano-devices which represent the building blocks for commercial "macroscopic" objects. A general method for the direct evaluation of the energy balance of such systems is not available at present. Calorimetry is a powerful tool to investigate energy exchange, but it usually requires macroscopic sample quantities. Here, we report on the development of an original experimental setup able to detect temperature variations as low as 10 mK in a sample of ∼10 ng using a thermometer device having physical dimensions of 5 × 5 mm2. This technique has been utilized to measure the enthalpy release during the adsorption process of H2 on titanium-decorated monolayer graphene. The sensitivity of these thermometers is high enough to detect a hydrogen uptake of ∼10-10 moles, corresponding to ∼0.2 ng, with an enthalpy release of about 23 µJ. The experimental setup allows, in perspective, scalability to even smaller sizes.

13.
Nanotechnology ; 29(29): 295601, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29644982

RESUMEN

Hybrid materials, containing a 2D filler embedded in a polymeric matrix, are an interesting platform for several applications, because of the variety of properties that the filler can impart to the polymer matrix when dispersed at the nanoscale. Moreover, novel properties could arise from the interaction between the two. Mostly the bulk properties of these materials have been studied so far, especially focusing on how the filler changes the polymeric matrix properties. Here we propose a complete change of perspective by using the hybrid nanocomposite material as a platform suitable to engineer the properties of the filler and to exploit its potential in the fabrication of devices. As a proof of concept of the versatility and the potential of the new method, we applied this approach to prepare black phosphorus (bP) nanocomposites through its dispersion in poly (methyl methacrylate). bP is a very interesting 2D material, whose application have so far been limited by its high reactivity to oxygen and water. In this respect, we show that electronic-grade bP flakes, already embedded in a protecting matrix since their exfoliation from the bulk material, are endowed with significantly increased stability and can be further processed into devices without degrading their properties.

14.
Chem Commun (Camb) ; 53(79): 10946-10949, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28933461

RESUMEN

Nickel nanoparticles were dispersed on the surface of exfoliated black phosphorus and the resulting nanohybrid Ni/2DBP showed an improved stability with respect to pristine 2D BP when kept under ambient conditions in the dark. Ni/2DBP was applied as a catalyst in the semihydrogenation of phenylacetylene and exhibited high conversion and selectivity towards styrene. These features were preserved after recycling tests revealing the high stability of the nanohybrid.

15.
Adv Mater Interfaces ; 3(3): 1500441, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27134812

RESUMEN

The stability of phosphorene is shown to be degraded by water. However, the presence of a small amount of water allows the synthesis of high-quality material in liquid exfoliation of black phosphorus using dimethylsulfoxide as solvent. A phosphorus/water molar ratio between 1.5 and 14 maximizes the quality of the phosphorene flakes and their stability.

16.
Phys Rev Lett ; 108(24): 246801, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23004306

RESUMEN

Transport experiments provide conflicting evidence on the possible existence of fractional order within integer quantum Hall systems. In fact, integer edge states sometimes behave as monolithic objects with no inner structure, while other experiments clearly highlight the role of fractional substructures. Recently developed low-temperature scanning probe techniques offer today an opportunity for a deeper-than-ever investigation of spatial features of such edge systems. Here we use scanning-gate microscopy and demonstrate that fractional features were unambiguously observed in every integer quantum Hall constriction studied. We present also an experimental estimate of the width of the fractional incompressible stripes corresponding to filling factors 1/3, 2/5, 3/5, and 2/3. Our results compare well with predictions of the edge-reconstruction theory.

17.
ACS Appl Mater Interfaces ; 4(4): 1860-4, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22423888

RESUMEN

A method of electrically contacting vertically grown nanowires of uneven heights, a common scenario among as-grown nanowires, is reported here using a chemically synthesized single-crystalline Au microplate as top electrode. The contact is electrically activated and the contact formation is predominantly due to electromigration. With this approach, the electrode could ohmically contact several thousand nanowires at once.

18.
ACS Nano ; 5(3): 2191-9, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21322642

RESUMEN

We report a novel method for probing the gate-voltage dependence of the surface potential of individual semiconductor nanowires. The statistics of electronic occupation of a single defect on the surface of the nanowire, determined from a random telegraph signal, is used as a measure for the local potential. The method is demonstrated for the case of one or two switching defects in indium arsenide (InAs) nanowire field effect transistors at temperatures T=25-77 K. Comparison with a self-consistent model shows that surface potential variation is retarded in the conducting regime due to screening by surface states with density Dss≈10(12) cm(-2) eV(-1). Temperature-dependent dynamics of electron capture and emission producing the random telegraph signals are also analyzed, and multiphonon emission is identified as the process responsible for capture and emission of electrons from the surface traps. Two defects studied in detail had capture activation energies of EB≈50 meV and EB≈110 meV and cross sections of σ∞≈3×10(-19) cm2 and σ∞≈2×10(-17) cm2, respectively. A lattice relaxation energy of Sℏω=187±15 meV was found for the first defect.


Asunto(s)
Arsenicales/química , Indio/química , Nanoestructuras/química , Semiconductores , Procesamiento de Señales Asistido por Computador/instrumentación , Arsenicales/efectos de la radiación , Campos Electromagnéticos , Indio/efectos de la radiación , Ensayo de Materiales , Nanoestructuras/efectos de la radiación , Tamaño de la Partícula
19.
Small ; 6(17): 1935-41, 2010 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-20662001

RESUMEN

During the growth of InAs nanowires from Pd catalyst particles on InAs(111)A substrates, two distinct classes of nanowires are observed with smooth or zigzagged sidewalls. It is shown that this is related to a bimodal distribution of the wire-tip diameter: above a critical diameter wires grow with smooth sidewalls, and below with zigzagged morphology. Transmission electron microscopy analysis shows that the catalyst particles at the tip of zigzagged wires are smooth and have a higher aspect ratio than those at the tip of smooth wires. Zigzagged wires grow from liquid particles in the vapor-liquid-solid (VLS) mode whereas the smooth ones grow from solid particles in the vapor-solid-solid (VSS) mode.


Asunto(s)
Arsenicales/química , Indio/química , Nanotecnología/métodos , Nanocables/química , Paladio/química , Catálisis , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Temperatura
20.
Langmuir ; 25(2): 1259-64, 2009 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-19093756

RESUMEN

Electron resist behavior of Pd hexadecanethiolate is studied by varying the e-dosage from 2-280 muC.cm(-2). The e-beam exposed resist is characterized using energy dispersive spectroscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy with nanometric lateral resolution. Electron beam exposure causes defects in the alkyl chain of the thiolate, giving the required solubility contrast during the developing step, thus qualifying the precursor as an e-beam resist. On exposure to the e-beam, the reduction of Pd(2+) to Pd(0) is observed, and the reduction increases with increasing e-dosage. The resist is highly sensitive, with the estimated sensitivity being 32 muC.cm(-2). Thermolysis at 250 degrees C leads to the formation of Pd nanoparticles, demonstrating the essential feature of a direct write resist for conducting patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...