Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1911, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024451

RESUMEN

Forecasting transitions between tidal ecosystem states, such as between bare tidal flats and vegetated marshes, is crucial because it may imply the irreversible loss of valuable ecosystem services. In this study, we combine geospatial analyses of three European estuaries with a simple numerical model to demonstrate that the development of micro-topographic patterning on tidal flats is an early indicator of marsh establishment. We first show that the development of micro-topographic patterns precedes vegetation establishment, and that patterns tend to form only on tidal flats with a slope of <0.3 degrees. Numerical modelling then provides an explanation for the formation of micro-topography due to the natural concentration of draining surface water over very gentle slopes. We find this early indicator to be robust across three estuaries where anthropogenic deepening and narrowing has occurred in recent decades, which may suggest its broader applicability to other estuaries with similar morphological management.

3.
Mar Pollut Bull ; 110(1): 250-260, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27339739

RESUMEN

The European Water Framework Directive requires a good ecological potential for heavily modified water bodies. This standard has not been reached for most large estuaries by 2015. Management plans for estuaries fall short in linking implementations between restoration measures and underlying spatial analyses. The distribution of emergent macrophytes - as an indicator of habitat quality - is here used to assess the ecological potential. Emergent macrophytes are capable of settling on gentle tidal flats where hydrodynamic stress is comparatively low. Analyzing their habitats based on spatial data, we set up species distribution models with 'elevation relative to mean high water', 'mean bank slope', and 'length of bottom friction' from shallow water up to the vegetation belt as key predictors representing hydrodynamic stress. Effects of restoration scenarios on habitats were assessed applying these models. Our findings endorse species distribution models as crucial spatial planning tools for implementing restoration measures in modified estuaries.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Estuarios , Modelos Teóricos , Organismos Acuáticos , Ecosistema , Monitoreo del Ambiente/métodos , Europa (Continente) , Poaceae
4.
PLoS One ; 10(9): e0138086, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26367004

RESUMEN

In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced.


Asunto(s)
Celulosa/biosíntesis , Cyperaceae/crecimiento & desarrollo , Ecosistema , Tallos de la Planta/crecimiento & desarrollo , Olas de Marea
5.
PLoS One ; 10(3): e0118687, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25799017

RESUMEN

Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.


Asunto(s)
Cyperaceae/fisiología , Olas de Marea , Humedales , Brotes de la Planta/fisiología , Semillas/fisiología , Navíos , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...