Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Thromb Res ; 241: 109068, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38945091

RESUMEN

BACKGROUND: Incidence of central venous catheter (CVC)-related thrombosis in critically ill patients remains ambiguous and its association with potential hazardous sequelae unknown. The primary aim of the study was to evaluate the epidemiology of CVC-related thrombosis; secondary aims were to assess the association of catheter-related thrombosis with catheter-related infection, pulmonary embolism and mortality. METHODS: This was a single-center, prospective observational study conducted at a tertiary intensive care unit (ICU) in the Netherlands. The study population consisted of CVC placements in adult ICU patients with a minimal indwelling time of 48 h. CVC-related thrombosis was diagnosed with ultrasonography. Primary outcomes were prevalence and incidence, incidence was reported as the number of cases per 1000 indwelling days. RESULTS: 173 CVCs in 147 patients were included. Median age of patients was 64.0 [IQR: 52.0, 72.0] and 71.1 % were male. Prevalence of thrombosis was 0.56 (95 % CI: 0.49, 0.63) and incidence per 1000 indwelling days was 65.7 (95 % CI: 59.0, 72.3). No association with catheter-related infection was found (p = 0.566). There was a significant association with pulmonary embolism (p = 0.022). All 173 CVCs were included in the survival analysis. Catheter-related thrombosis was associated with a lower 28-day mortality risk (hazard ratio: 0.39, 95 % CI: 0.17, 0.87). CONCLUSION: In critically ill patients, prevalence and incidence of catheter-related thrombosis were high. Catheter-related thrombosis was not associated with catheter-related infections, but was associated with pulmonary embolism and a decreased mortality risk.

3.
J Clin Med ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892952

RESUMEN

Background: It is unclear whether other cardiac biomarkers than NT-proBNP can be useful in the risk stratification of patients weaning from mechanical ventilation. The aim of this study is to summarize the role of ischemic cardiac biomarkers in predicting spontaneous breathing trial (SBT) or extubation failure. Methods: We systematically searched Embase, MEDLINE, Web of Science, and Cochrane Central for studies published before January 2024 that reported the association between ischemic cardiac biomarkers and SBT or extubation failure. Data were extracted using a standardized form and methodological assessment was performed using the QUIPS tool. Results: Seven observational studies investigating four ischemic cardiac biomarkers (Troponin-T, Troponin-I, CK-MB, Myoglobin) were included. One study reported a higher peak Troponin-I in patients with extubation failure compared to extubation success (50 ng/L [IQR, 20-215] versus 30 ng/L [IQR, 10-86], p = 0.01). A second study found that Troponin-I measured before the SBT was higher in patients with SBT failure in comparison to patients with SBT success (100 ± 80 ng/L versus 70 ± 130 ng/L, p = 0.03). A third study reported a higher CK-MB measured at the end of the SBT in patients with weaning failure (SBT or extubation failure) in comparison to weaning success (8.77 ± 20.5 ng/mL versus 1.52 ± 1.42 ng/mL, p = 0.047). Troponin-T and Myoglobin as well as Troponin-I and CK-MB measured at other time points were not found to be related to SBT or extubation failure. However, most studies were underpowered and with high risk of bias. Conclusions: The association with SBT or extubation failure is limited for Troponin-I and CK-MB and appears absent for Troponin-T and Myoglobin, but available studies are hampered by significant methodological drawbacks. To more definitively determine the role of ischemic cardiac biomarkers, future studies should prioritize larger sample sizes, including patients at risk of cardiac disease, using stringent SBTs and structured timing of laboratory measurements before and after SBT.

4.
Respir Care ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772682

RESUMEN

BACKGROUND: High-flow tracheal oxygen (HFTO) is being used as supportive therapy during weaning in tracheostomized patients difficult to wean from invasive mechanical ventilation. There is, however, no clinical evidence for such a strategy. Therefore, we conducted a systematic review to summarize studies evaluating the physiologic effects of HFTO during tracheostomy-facilitated weaning and to identify potential areas for future research in this field. METHODS: Observational and interventional studies on critically ill subjects weaning from mechanical ventilation via tracheostomy published until December 22, 2022, were eligible. Studies on high-flow oxygen, only in children, non-human models or animals, on clinical outcome only, abstracts without full-text availability, case reports, and reviews were excluded. Main outcomes were end-expiratory lung volume (EELV) and tidal volume using electrical impedance tomography, respiratory effort assessed by esophageal manometry, work of breathing and neuroventilatory drive as assessed by electrical activity of the diaphragm (EAdi) signal, airway pressure (Paw), oxygenation (PaO2 /FIO2 or SpO2 /FIO2 ), breathing frequency, tidal volume, and PaCO2 . RESULTS: In total, 1,327 references were identified, of which 5 were included. In all studies, HFTO was administered with flow 50 L/min and compared to conventional O2 therapy in a crossover design. The total average duration of invasive ventilation at time of measurements ranged from 11-27 d. In two studies, PaO2 /FIO2 and mean Paw were higher with HFTO. EELV, tidal volumes, esophageal pressure swings, and EAdi were similar during high-flow tracheal oxygen and conventional O2 therapy. CONCLUSIONS: The main physiological effect of HFTO as compared to conventional O2 therapy in tracheostomized subjects weaning from mechanical ventilation was improved oxygenation that is probably flow-dependent. Respiratory effort, lung aeration, neuroventilatory drive, and ventilation were similar for HFTO and conventional O2 therapy. Future studies on HFTO should be performed early in the weaning process and should evaluate its effect on sputum clearance and patient-centered outcomes like dyspnea.

8.
Intensive Care Med ; 50(2): 159-180, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38388984

RESUMEN

This statement outlines a review of the literature and current practice concerning the prevalence, clinical significance, diagnosis and management of dyspnoea in critically ill, mechanically ventilated adult patients. It covers the definition, pathophysiology, epidemiology, short- and middle-term impact, detection and quantification, and prevention and treatment of dyspnoea. It represents a collaboration of the European Respiratory Society (ERS) and the European Society of Intensive Care Medicine (ESICM). Dyspnoea ranks among the most distressing experiences that human beings can endure. Approximately 40% of patients undergoing invasive mechanical ventilation in the intensive care unit (ICU) report dyspnoea, with an average intensity of 45 mm on a visual analogue scale from 0 to 100 mm. Although it shares many similarities with pain, dyspnoea can be far worse than pain in that it summons a primal fear response. As such, it merits universal and specific consideration. Dyspnoea must be identified, prevented and relieved in every patient. In the ICU, mechanically ventilated patients are at high risk of experiencing breathing difficulties because of their physiological status and, in some instances, because of mechanical ventilation itself. At the same time, mechanically ventilated patients have barriers to signalling their distress. Addressing this major clinical challenge mandates teaching and training, and involves ICU caregivers and patients. This is even more important because, as opposed to pain which has become a universal healthcare concern, very little attention has been paid to the identification and management of respiratory suffering in mechanically ventilated ICU patients.


Asunto(s)
Medicina , Respiración Artificial , Adulto , Humanos , Respiración Artificial/efectos adversos , Unidades de Cuidados Intensivos , Disnea/etiología , Disnea/terapia , Dolor
9.
Eur Respir J ; 63(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38387998

RESUMEN

This statement outlines a review of the literature and current practice concerning the prevalence, clinical significance, diagnosis and management of dyspnoea in critically ill, mechanically ventilated adult patients. It covers the definition, pathophysiology, epidemiology, short- and middle-term impact, detection and quantification, and prevention and treatment of dyspnoea. It represents a collaboration of the European Respiratory Society and the European Society of Intensive Care Medicine. Dyspnoea ranks among the most distressing experiences that human beings can endure. Approximately 40% of patients undergoing invasive mechanical ventilation in the intensive care unit (ICU) report dyspnoea, with an average intensity of 45 mm on a visual analogue scale from 0 to 100 mm. Although it shares many similarities with pain, dyspnoea can be far worse than pain in that it summons a primal fear response. As such, it merits universal and specific consideration. Dyspnoea must be identified, prevented and relieved in every patient. In the ICU, mechanically ventilated patients are at high risk of experiencing breathing difficulties because of their physiological status and, in some instances, because of mechanical ventilation itself. At the same time, mechanically ventilated patients have barriers to signalling their distress. Addressing this major clinical challenge mandates teaching and training, and involves ICU caregivers and patients. This is even more important because, as opposed to pain which has become a universal healthcare concern, very little attention has been paid to the identification and management of respiratory suffering in mechanically ventilated ICU patients.


Asunto(s)
Disnea , Respiración Artificial , Adulto , Humanos , Respiración Artificial/efectos adversos , Disnea/terapia , Disnea/etiología , Unidades de Cuidados Intensivos , Cuidados Críticos , Dolor , Enfermedad Crítica
11.
Curr Opin Crit Care ; 30(1): 61-68, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085880

RESUMEN

PURPOSE OF REVIEW: With mechanical ventilation, positive end-expiratory pressure (PEEP) is applied to improve oxygenation and lung homogeneity. However, PEEP setting has been hypothesized to contribute to critical illness associated diaphragm dysfunction via several mechanisms. Here, we discuss the impact of PEEP on diaphragm function, activity and geometry. RECENT FINDINGS: PEEP affects diaphragm geometry: it induces a caudal movement of the diaphragm dome and shortening of the zone of apposition. This results in reduced diaphragm neuromechanical efficiency. After prolonged PEEP application, the zone of apposition adapts by reducing muscle fiber length, so-called longitudinal muscle atrophy. When PEEP is withdrawn, for instance during a spontaneous breathing trial, the shortened diaphragm muscle fibers may over-stretch which may lead to (additional) diaphragm myotrauma. Furthermore, PEEP may either increase or decrease respiratory drive and resulting respiratory effort, probably depending on lung recruitability. Finally, the level of PEEP can also influence diaphragm activity in the expiratory phase, which may be an additional mechanism for diaphragm myotrauma. SUMMARY: Setting PEEP could play an important role in both lung and diaphragm protective ventilation. Both high and low PEEP levels could potentially introduce or exacerbate diaphragm myotrauma. Today, the impact of PEEP setting on diaphragm structure and function is in its infancy, and clinical implications are largely unknown.


Asunto(s)
Diafragma , Respiración con Presión Positiva , Humanos , Pulmón , Respiración , Respiración Artificial/métodos
12.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L7-L18, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933449

RESUMEN

COVID-19-related acute respiratory distress syndrome (ARDS) can lead to long-term pulmonary fibrotic lesions. Alveolar fibroproliferative response (FPR) is a key factor in the development of pulmonary fibrosis. N-terminal peptide of procollagen III (NT-PCP-III) is a validated biomarker for activated FPR in ARDS. This study aimed to assess the association between dynamic changes in alveolar FPR and long-term outcomes, as well as mortality in COVID-19 ARDS patients. We conducted a prospective cohort study of 154 COVID-19 ARDS patients. We collected bronchoalveolar lavage (BAL) and blood samples for measurement of 17 pulmonary fibrosis biomarkers, including NT-PCP-III. We assessed pulmonary function and chest computed tomography (CT) at 3 and 12 mo after hospital discharge. We performed joint modeling to assess the association between longitudinal changes in biomarker levels and mortality at day 90 after starting mechanical ventilation. 154 patients with 284 BAL samples were analyzed. Of all patients, 40% survived to day 90, of whom 54 completed the follow-up procedure. A longitudinal increase in NT-PCP-III was associated with increased mortality (HR 2.89, 95% CI: 2.55-3.28; P < 0.001). Forced vital capacity and diffusion for carbon monoxide were impaired at 3 mo but improved significantly at one year after hospital discharge (P = 0.03 and P = 0.004, respectively). There was no strong evidence linking alveolar FPR during hospitalization and signs of pulmonary fibrosis in pulmonary function or chest CT images during 1-yr follow-up. In COVID-19 ARDS patients, alveolar FPR during hospitalization was associated with higher mortality but not with the presence of long-term fibrotic lung sequelae within survivors.NEW & NOTEWORTHY This is the first prospective study on the longitudinal alveolar fibroproliferative response in COVID-19 ARDS and its relationship with mortality and long-term follow-up. We used the largest cohort of COVID-19 ARDS patients who had consecutive bronchoalveolar lavages and measured 17 pulmonary fibroproliferative biomarkers. We found that a higher fibroproliferative response during admission was associated with increased mortality, but not correlated with long-term fibrotic lung sequelae in survivors.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Síndrome de Dificultad Respiratoria , Humanos , Fibrosis Pulmonar/complicaciones , Estudios Prospectivos , Estudios de Seguimiento , Líquido del Lavado Bronquioalveolar , COVID-19/complicaciones , Síndrome de Dificultad Respiratoria/patología , Biomarcadores
13.
Crit Care ; 27(1): 462, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012731

RESUMEN

BACKGROUND: Prone position has been shown to improve oxygenation and survival in patients with early acute respiratory distress syndrome (ARDS). These beneficial effects are partly mediated by improved ventilation/perfusion (V/Q) distribution. Few studies have investigated the impact of early versus delayed proning on V/Q distribution in patients with ARDS. The aim of this study was to assess the regional ventilation and perfusion distribution in early versus persistent ARDS after prone position. METHODS: This is a prospective, observational study from June 30, 2021, to October 1, 2022 at the medical ICU in Zhongda Hospital, Southeast University. Fifty-seven consecutive adult patients with moderate-to-severe ARDS ventilated in supine and prone position. Electrical impedance tomography was used to study V/Q distribution in the supine position and 12 h after a prone session. RESULTS: Of the 57 patients, 33 were early ARDS (≤ 7 days) and 24 were persistent ARDS (> 7 days). Oxygenation significantly improved after proning in early ARDS (157 [121, 191] vs. 190 [164, 245] mm Hg, p < 0.001), whereas no significant change was found in persistent ARDS patients (168 [136, 232] vs.177 [155, 232] mm Hg, p = 0.10). Compared to supine position, prone reduced V/Q mismatch in early ARDS (28.7 [24.6, 35.4] vs. 22.8 [20.0, 26.8] %, p < 0.001), but increased V/Q mismatch in persistent ARDS (23.8 [19.8, 28.6] vs. 30.3 [24.5, 33.3] %, p = 0.006). In early ARDS, proning significantly reduced shunt in the dorsal region and dead space in the ventral region. In persistent ARDS, proning increased global shunt. A significant correlation was found between duration of ARDS onset to proning and the change in V/Q distribution (r = 0.54, p < 0.001). CONCLUSIONS: Prone position significantly reduced V/Q mismatch in patients with early ARDS, while it increased V/Q mismatch in persistent ARDS patients. Trial registration ClinicalTrials.gov (NCT05207267, principal investigator Ling Liu, date of registration 2021.08.20).


Asunto(s)
Pulmón , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Perfusión , Posición Prona , Respiración , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Estudios Prospectivos
15.
Ultrasound J ; 15(1): 40, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37782370

RESUMEN

BACKGROUND: Lung ultrasound (LUS) can detect pulmonary edema and it is under consideration to be added to updated acute respiratory distress syndrome (ARDS) criteria. However, it remains uncertain whether different LUS scores can be used to quantify pulmonary edema in patient with ARDS. OBJECTIVES: This study examined the diagnostic accuracy of four LUS scores with the extravascular lung water index (EVLWi) assessed by transpulmonary thermodilution in patients with moderate-to-severe COVID-19 ARDS. METHODS: In this predefined secondary analysis of a multicenter randomized-controlled trial (InventCOVID), patients were enrolled within 48 hours after intubation and underwent LUS and EVLWi measurement on the first and fourth day after enrolment. EVLWi and ∆EVLWi were used as reference standards. Two 12-region scores (global LUS and LUS-ARDS), an 8-region anterior-lateral score and a 4-region B-line score were used as index tests. Pearson correlation was performed and the area under the receiver operating characteristics curve (AUROCC) for severe pulmonary edema (EVLWi > 15 mL/kg) was calculated. RESULTS: 26 out of 30 patients (87%) had complete LUS and EVLWi measurements at time point 1 and 24 out of 29 patients (83%) at time point 2. The global LUS (r = 0.54), LUS-ARDS (r = 0.58) and anterior-lateral score (r = 0.54) correlated significantly with EVLWi, while the B-line score did not (r = 0.32). ∆global LUS (r = 0.49) and ∆anterior-lateral LUS (r = 0.52) correlated significantly with ∆EVLWi. AUROCC for EVLWi > 15 ml/kg was 0.73 for the global LUS, 0.79 for the anterior-lateral and 0.85 for the LUS-ARDS score. CONCLUSIONS: Overall, LUS demonstrated an acceptable diagnostic accuracy for detection of pulmonary edema in moderate-to-severe COVID-19 ARDS when compared with PICCO. For identifying patients at risk of severe pulmonary edema, an extended score considering pleural morphology may be of added value. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04794088, registered on 11 March 2021. European Clinical Trials Database number 2020-005447-23.

16.
Intensive Care Med Exp ; 11(1): 73, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891413

RESUMEN

There is a need to monitor tidal volume in critically ill patients with acute respiratory failure, given its relation with adverse clinical outcome. However, quantification of tidal volume in non-intubated patients is challenging. In this proof-of-concept study, we evaluated whether ultrasound measurements of diaphragm excursion could be a valid surrogate for tidal volume in patients with respiratory failure. Diaphragm excursions and tidal volumes were simultaneously measured in invasively ventilated patients (N = 21) and healthy volunteers (N = 20). Linear mixed models were used to estimate the ratio between tidal volume and diaphragm excursion. The tidal volume-diaphragm excursion ratio was 201 mL/cm in ICU patients [95% confidence interval (CI) 161-240 mL/cm], and 361 (294-428) mL/cm in healthy volunteers. An excellent association was shown within participants (R2 = 0.96 in ICU patients, R2 = 0.90 in healthy volunteers). However, the differences between observed tidal volume and tidal volume as predicted by the linear mixed models were considerable: the 95% limits of agreement in Bland-Altman plots were ± 91 mL in ICU patients and ± 396 mL in healthy volunteers. Likewise, the variability in tidal volume estimation between participants was large. This study shows that diaphragm excursions measured with ultrasound correlate with tidal volume, yet quantification of absolute tidal volume from diaphragm excursion is unreliable.

17.
Crit Care ; 27(1): 226, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291677

RESUMEN

PURPOSE: A hallmark of acute respiratory distress syndrome (ARDS) is hypoxaemic respiratory failure due to pulmonary vascular hyperpermeability. The tyrosine kinase inhibitor imatinib reversed pulmonary capillary leak in preclinical studies and improved clinical outcomes in hospitalized COVID-19 patients. We investigated the effect of intravenous (IV) imatinib on pulmonary edema in COVID-19 ARDS. METHODS: This was a multicenter, randomized, double-blind, placebo-controlled trial. Invasively ventilated patients with moderate-to-severe COVID-19 ARDS were randomized to 200 mg IV imatinib or placebo twice daily for a maximum of seven days. The primary outcome was the change in extravascular lung water index (∆EVLWi) between days 1 and 4. Secondary outcomes included safety, duration of invasive ventilation, ventilator-free days (VFD) and 28-day mortality. Posthoc analyses were performed in previously identified biological subphenotypes. RESULTS: 66 patients were randomized to imatinib (n = 33) or placebo (n = 33). There was no difference in ∆EVLWi between the groups (0.19 ml/kg, 95% CI - 3.16 to 2.77, p = 0.89). Imatinib treatment did not affect duration of invasive ventilation (p = 0.29), VFD (p = 0.29) or 28-day mortality (p = 0.79). IV imatinib was well-tolerated and appeared safe. In a subgroup of patients characterized by high IL-6, TNFR1 and SP-D levels (n = 20), imatinib significantly decreased EVLWi per treatment day (- 1.17 ml/kg, 95% CI - 1.87 to - 0.44). CONCLUSIONS: IV imatinib did not reduce pulmonary edema or improve clinical outcomes in invasively ventilated COVID-19 patients. While this trial does not support the use of imatinib in the general COVID-19 ARDS population, imatinib reduced pulmonary edema in a subgroup of patients, underscoring the potential value of predictive enrichment in ARDS trials. Trial registration NCT04794088 , registered 11 March 2021. European Clinical Trials Database (EudraCT number: 2020-005447-23).


Asunto(s)
COVID-19 , Edema Pulmonar , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/complicaciones , Mesilato de Imatinib/efectos adversos , Pulmón , Método Doble Ciego
18.
Thorax ; 78(9): 912-921, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37142421

RESUMEN

INTRODUCTION: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS: In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS: 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS: Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Biomarcadores , Líquido del Lavado Bronquioalveolar , COVID-19/complicaciones , Enfermedad Crítica , Ligandos , Síndrome de Dificultad Respiratoria/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano
19.
Front Pediatr ; 11: 1147309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033174

RESUMEN

Introduction: In mechanically ventilated adults, thickening fraction of diaphragm (dTF) measured by ultrasound is used to predict extubation success. Whether dTF can also predict extubation success in children is unclear. Aim: To investigate the association between dTF and extubation success in children. Second, to assess diaphragm thickness during ventilation and the correlation between dTF, diaphragm thickness (Tdi), age and body surface. Method: Prospective observational cohort study in children aged 0-18 years old with expected invasive ventilation for >48 h. Ultrasound was performed on day 1 after intubation (baseline), day 4, day 7, day 10, at pre-extubation, and within 24 h after extubation. Primary outcome was the association between dTF pre-extubation and extubation success. Secondary outcome measures were Tdi end-inspiratory and Tdi end-expiratory and atrophy defined as <10% decrease of Tdi end-expiratory versus baseline at pre-extubation. Correlations were calculated with Spearman correlation coefficients. Inter-rater reliability was calculated with intraclass correlation (ICC). Results: Fifty-three patients, with median age 3.0 months (IQR 0.1-66.0) and median duration of invasive ventilation of 114.0 h (IQR 55.5-193.5), were enrolled. Median dTF before extubation with Pressure Support 10 above 5 cmH2O was 15.2% (IQR 9.7-19.3). Extubation failure occurred in six children, three of whom were re-intubated and three then received non-invasive ventilation. There was no significant association between dTF and extubation success; OR 0.33 (95% CI; 0.06-1.86). Diaphragmatic atrophy was observed in 17/53 cases, in three of extubation failure occurred. Children in the extubation failure group were younger: 2.0 months (IQR 0.81-183.0) vs. 3.0 months (IQR 0.10-48.0); p = 0.045. At baseline, pre-extubation and post-extubation there was no significant correlation between age and BSA on the one hand and dTF, Tdi- insp and Tdi-exp on the other hand. The ICC representing the level of inter-rater reliability between the two examiners performing the ultrasounds was 0.994 (95% CI 0.970-0.999). The ICC of the inter-rater reliability between the raters in 36 paired assessments was 0.983 (95% CI 0.974-0.990). Conclusion: There was no significant association between thickening fraction of the diaphragm and extubation success in ventilated children.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...