Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Thorax ; 78(9): 912-921, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37142421

RESUMEN

INTRODUCTION: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS: In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS: 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS: Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Biomarcadores , Líquido del Lavado Bronquioalveolar , COVID-19/complicaciones , Enfermedad Crítica , Ligandos , Síndrome de Dificultad Respiratoria/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano
2.
Trials ; 24(1): 226, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964614

RESUMEN

BACKGROUND: Fluid therapy is a common intervention in critically ill patients. It is increasingly recognised that deresuscitation is an essential part of fluid therapy and delayed deresuscitation is associated with longer invasive ventilation and length of intensive care unit (ICU) stay. However, optimal timing and rate of deresuscitation remain unclear. Lung ultrasound (LUS) may be used to identify fluid overload. We hypothesise that daily LUS-guided deresuscitation is superior to deresuscitation without LUS in critically ill patients expected to undergo invasive ventilation for more than 24 h in terms of ventilator free-days and being alive at day 28. METHODS: The "effect of lung ultrasound-guided fluid deresuscitation on duration of ventilation in intensive care unit patients" (CONFIDENCE) is a national, multicentre, open-label, randomised controlled trial (RCT) in adult critically ill patients that are expected to be invasively ventilated for at least 24 h. Patients with conditions that preclude a negative fluid balance or LUS examination are excluded. CONFIDENCE will operate in 10 ICUs in the Netherlands and enrol 1000 patients. After hemodynamic stabilisation, patients assigned to the intervention will receive daily LUS with fluid balance recommendations. Subjects in the control arm are deresuscitated at the physician's discretion without the use of LUS. The primary endpoint is the number of ventilator-free days and being alive at day 28. Secondary endpoints include the duration of invasive ventilation; 28-day mortality; 90-day mortality; ICU, in hospital and total length of stay; cumulative fluid balance on days 1-7 after randomisation and on days 1-7 after start of LUS examination; mean serum lactate on days 1-7; the incidence of reintubations, chest drain placement, atrial fibrillation, kidney injury (KDIGO stadium ≥ 2) and hypernatremia; the use of invasive hemodynamic monitoring, and chest-X-ray; and quality of life at day 28. DISCUSSION: The CONFIDENCE trial is the first RCT comparing the effect of LUS-guided deresuscitation to routine care in invasively ventilated ICU patients. If proven effective, LUS-guided deresuscitation could improve outcomes in some of the most vulnerable and resource-intensive patients in a manner that is non-invasive, easy to perform, and well-implementable. TRIAL REGISTRATION: ClinicalTrials.gov NCT05188092. Registered since January 12, 2022.


Asunto(s)
Enfermedad Crítica , Pulmón , Adulto , Humanos , Pulmón/diagnóstico por imagen , Cuidados Críticos/métodos , Respiración Artificial/métodos , Unidades de Cuidados Intensivos , Ultrasonografía Intervencional , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
3.
J Crit Care ; 76: 154272, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36801598

RESUMEN

PURPOSE: COVID-19 associated pulmonary aspergillosis (CAPA) is associated with increased morbidity and mortality in ICU patients. We investigated the incidence of, risk factors for and potential benefit of a pre-emptive screening strategy for CAPA in ICUs in the Netherlands/Belgium during immunosuppressive COVID-19 treatment. MATERIALS AND METHODS: A retrospective, observational, multicentre study was performed from September 2020-April 2021 including patients admitted to the ICU who had undergone diagnostics for CAPA. Patients were classified based on 2020 ECMM/ISHAM consensus criteria. RESULTS: CAPA was diagnosed in 295/1977 (14.9%) patients. Corticosteroids were administered to 97.1% of patients and interleukin-6 inhibitors (anti-IL-6) to 23.5%. EORTC/MSGERC host factors or treatment with anti-IL-6 with or without corticosteroids were not risk factors for CAPA. Ninety-day mortality was 65.3% (145/222) in patients with CAPA compared to 53.7% (176/328) without CAPA (p = 0.008). Median time from ICU admission to CAPA diagnosis was 12 days. Pre-emptive screening for CAPA was not associated with earlier diagnosis or reduced mortality compared to a reactive diagnostic strategy. CONCLUSIONS: CAPA is an indicator of a protracted course of a COVID-19 infection. No benefit of pre-emptive screening was observed, but prospective studies comparing pre-defined strategies would be required to confirm this observation.


Asunto(s)
COVID-19 , Aspergilosis Pulmonar , Humanos , Incidencia , Tratamiento Farmacológico de COVID-19 , Estudios Prospectivos , Estudios Retrospectivos
4.
Cardiovasc Pathol ; 64: 107524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36649811

RESUMEN

BACKGROUND: Histopathological studies have shown inflammation, cardiomyocyte injury, and microvascular thrombosis in the ventricular myocardium of patients with coronavirus disease 2019 (COVID-19). However, although atrial dysfunction is common in COVID-19, little is known about histopathological changes in the atria of the heart. We therefore analyzed inflammation, cardiomyocyte injury, and microvascular thrombogenicity in the atria of deceased patients with COVID-19. METHODS: Atrial tissue was obtained from autopsied COVID-19 (n=16) patients and control patients (n=10) and analyzed using immunohistochemistry. The infiltration of CD45+ leukocytes, CD3+ T lymphocytes, CD68+ macrophages, MPO+ neutrophils, and Tryptase+ mast cells were quantified as well as cardiomyocyte damage and microvascular thrombosis. In addition, Tissue Factor (TF) and Factor XII (FXII) were quantified as markers of microvascular thrombogenicity. RESULTS: The numbers of lymphocytes, macrophages, and neutrophils were significantly increased in the atrial myocardium and epicardial atrial adipose tissue of COVID-19 patients compared with the control group. This was accompanied by dispersed cardiomyocyte injury, the occasional presence of microvascular thrombosis, and an increased presence of TF and FXII in the microvascular endothelium. CONCLUSIONS: Severe COVID-19 induces inflammation, cardiomyocyte injury, and microvascular thrombosis in the atria of the heart.


Asunto(s)
Fibrilación Atrial , COVID-19 , Trombosis , Humanos , COVID-19/complicaciones , COVID-19/patología , Inflamación/patología , Atrios Cardíacos/patología , Trombosis/etiología , Trombosis/patología
5.
Crit Care Med ; 51(3): 357-364, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36562620

RESUMEN

OBJECTIVES: To investigate the impact of thoracic ultrasound (TUS) examinations on clinical management in adult ICU patients. DESIGN: A prospective international observational study. SETTING: Four centers in The Netherlands and Italy. PATIENTS: Adult ICU patients (> 18 yr) that received a clinically indicated lung ultrasound examination. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Clinicians performing TUS completed a pre- and post-examination case report form. Patient characteristics, TUS, and resulting clinical effects were recorded. First, change of management, defined as a TUS-induced change in clinical impression leading to a change in treatment plan, was reported. Second, execution of intended management changes within 8 hours was verified. Third, change in fluid balance after 8 hours was calculated. A total of 725 TUS performed by 111 operators across 534 patients (mean age 63 ± 15.0, 70% male) were included. Almost half of TUS caused a change in clinical impression, which resulted in change of management in 39% of cases. The remainder of TUS confirmed the clinical impression, while a minority (4%) did not contribute. Eighty-nine percent of management changes indicated by TUS were executed within 8 hours. TUS examinations that led to a change in fluid management also led to distinct and appropriate changes in patient's fluid balance. CONCLUSIONS: In this international observational study in adult ICU patients, use of TUS had a major impact on clinical management. These results provide grounds for future randomized controlled trials to determine if TUS-induced changes in decision-making also lead to improved health outcomes.


Asunto(s)
Enfermedad Crítica , Pulmón , Adulto , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Estudios Prospectivos , Ultrasonografía/métodos , Pulmón/diagnóstico por imagen , Italia
6.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36555335

RESUMEN

Diaphragm weakness frequently develops in mechanically ventilated critically ill patients and is associated with increased morbidity, including ventilator weaning failure, mortality, and health care costs. The mechanisms underlying diaphragm weakness are incompletely understood but may include the elastic properties of titin, a giant protein whose layout in the muscle's sarcomeres makes it an ideal candidate to sense ventilation-induced diaphragm unloading, resulting in downstream signaling through titin-binding proteins. In the current study, we investigated whether modulating titin stiffness affects the development of diaphragm weakness during mechanical ventilation. To this end, we ventilated genetically engineered mice with reduced titin stiffness (Rbm20ΔRRM), and robust (TtnΔIAjxn) or severely (TtnΔ112-158) increased titin stiffness for 8 h, and assessed diaphragm contractility and protein expression of titin-binding proteins. Mechanical ventilation reduced the maximum active tension of the diaphragm in WT, TtnΔIAjxn and TtnΔ112-158 mice. However, in Rbm20ΔRRM mice maximum active tension was preserved after ventilation. Analyses of titin binding proteins suggest that muscle ankyrin repeat proteins (MARPs) 1 and 2 may play a role in the adaptation of the diaphragm to mechanical ventilation, and the preservation of diaphragm contractility in Rbm20ΔRRM mice. Thus, Rbm20ΔRRM mice, expressing titin isoforms with lower stiffness, are protected from mechanical ventilation-induced diaphragm weakness, suggesting that titin elasticity may modulate the diaphragm's response to unloading during mechanical ventilation.


Asunto(s)
Trastornos Respiratorios , Respiración Artificial , Ratones , Animales , Conectina/metabolismo , Respiración Artificial/efectos adversos , Diafragma/metabolismo , Debilidad Muscular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN
7.
Chest ; 162(6): e343-e345, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36494141
8.
Ned Tijdschr Geneeskd ; 1662022 09 26.
Artículo en Holandés | MEDLINE | ID: mdl-36300435

RESUMEN

High flow nasal oxygen (HFNO) is proven to be effective in non-COVID-19 hypoxemic respiratory failure. In the beginning of the COVID-19 pandemic, HFNO was quickly introduced into daily clinical practice, although the evidence of its effectiveness in COVID-19 was limited. Randomized controlled trials suggest that HFNO has no effect on survival. However, HFNO may lead to less intubations in comparison with conventional oxygen therapy. The evidence of HFNO use in patients with do-not-intubate orders remains very limited. However, in these patients, improvement in comfort could be an important argument to start treatment with HFNO. Additional research is needed to make an evidence based consideration about the clinical use of HFNO in COVID-19 care.


Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Humanos , Oxígeno/uso terapéutico , Pandemias , Terapia por Inhalación de Oxígeno/efectos adversos , Insuficiencia Respiratoria/terapia , Insuficiencia Respiratoria/etiología
9.
Shock ; 58(5): 358-365, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36155964

RESUMEN

ABSTRACT: Background: Aims of this study were to investigate the prevalence and incidence of catheter-related infection, identify risk factors, and determine the relation of catheter-related infection with mortality in critically ill COVID-19 patients. Methods: This was a retrospective cohort study of central venous catheters (CVCs) in critically ill COVID-19 patients. Eligible CVC insertions required an indwelling time of at least 48 hours and were identified using a full-admission electronic health record database. Risk factors were identified using logistic regression. Differences in survival rates at day 28 of follow-up were assessed using a log-rank test and proportional hazard model. Results: In 538 patients, a total of 914 CVCs were included. Prevalence and incidence of suspected catheter-related infection were 7.9% and 9.4 infections per 1,000 catheter indwelling days, respectively. Prone ventilation for more than 5 days was associated with increased risk of suspected catheter-related infection; odds ratio, 5.05 (95% confidence interval 2.12-11.0). Risk of death was significantly higher in patients with suspected catheter-related infection (hazard ratio, 1.78; 95% confidence interval, 1.25-2.53). Conclusions: This study shows that in critically ill patients with COVID-19, prevalence and incidence of suspected catheter-related infection are high, prone ventilation is a risk factor, and mortality is higher in case of catheter-related infection.


Asunto(s)
COVID-19 , Infecciones Relacionadas con Catéteres , Cateterismo Venoso Central , Catéteres Venosos Centrales , Humanos , Infecciones Relacionadas con Catéteres/epidemiología , Infecciones Relacionadas con Catéteres/etiología , Cateterismo Venoso Central/efectos adversos , Enfermedad Crítica , Incidencia , Estudios Retrospectivos , COVID-19/epidemiología , Catéteres Venosos Centrales/efectos adversos , Factores de Riesgo
10.
Lancet Respir Med ; 10(12): 1137-1146, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36087611

RESUMEN

BACKGROUND: Vilobelimab, an anti-C5a monoclonal antibody, was shown to be safe in a phase 2 trial of invasively mechanically ventilated patients with COVID-19. Here, we aimed to determine whether vilobelimab in addition to standard of care improves survival outcomes in this patient population. METHODS: This randomised, double-blind, placebo-controlled, multicentre phase 3 trial was performed at 46 hospitals in the Netherlands, Germany, France, Belgium, Russia, Brazil, Peru, Mexico, and South Africa. Participants aged 18 years or older who were receiving invasive mechanical ventilation, but not more than 48 h after intubation at time of first infusion, had a PaO2/FiO2 ratio of 60-200 mm Hg, and a confirmed SARS-CoV-2 infection with any variant in the past 14 days were eligible for this study. Eligible patients were randomly assigned (1:1) to receive standard of care and vilobelimab at a dose of 800 mg intravenously for a maximum of six doses (days 1, 2, 4, 8, 15, and 22) or standard of care and a matching placebo using permuted block randomisation. Treatment was not continued after hospital discharge. Participants, caregivers, and assessors were masked to group assignment. The primary outcome was defined as all-cause mortality at 28 days in the full analysis set (defined as all randomly assigned participants regardless of whether a patient started treatment, excluding patients randomly assigned in error) and measured using Kaplan-Meier analysis. Safety analyses included all patients who had received at least one infusion of either vilobelimab or placebo. This study is registered with ClinicalTrials.gov, NCT04333420. FINDINGS: From Oct 1, 2020, to Oct 4, 2021, we included 368 patients in the ITT analysis (full analysis set; 177 in the vilobelimab group and 191 in the placebo group). One patient in the vilobelimab group was excluded from the primary analysis due to random assignment in error without treatment. At least one dose of study treatment was given to 364 (99%) patients (safety analysis set). 54 patients (31%) of 177 in the vilobelimab group and 77 patients (40%) of 191 in the placebo group died in the first 28 days. The all-cause mortality rate at 28 days was 32% (95% CI 25-39) in the vilobelimab group and 42% (35-49) in the placebo group (hazard ratio 0·73, 95% CI 0·50-1·06; p=0·094). In the predefined analysis without site-stratification, vilobelimab significantly reduced all-cause mortality at 28 days (HR 0·67, 95% CI 0·48-0·96; p=0·027). The most common TEAEs were acute kidney injury (35 [20%] of 175 in the vilobelimab group vs 40 [21%] of 189 in the placebo), pneumonia (38 [22%] vs 26 [14%]), and septic shock (24 [14%] vs 31 [16%]). Serious treatment-emergent adverse events were reported in 103 (59%) of 175 patients in the vilobelimab group versus 120 (63%) of 189 in the placebo group. INTERPRETATION: In addition to standard of care, vilobelimab improves survival of invasive mechanically ventilated patients with COVID-19 and leads to a significant decrease in mortality. Vilobelimab could be considered as an additional therapy for patients in this setting and further research is needed on the role of vilobelimab and C5a in other acute respiratory distress syndrome-causing viral infections. FUNDING: InflaRx and the German Federal Government.


Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Enfermedad Crítica/terapia , Respiración Artificial , Resultado del Tratamiento , Anticuerpos Monoclonales , Método Doble Ciego
11.
Brain Commun ; 4(4): fcac195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938070

RESUMEN

Neurological monitoring in sedated Intensive Care Unit patients is constrained by the lack of reliable blood-based biomarkers. Neurofilament light is a cross-disease biomarker for neuronal damage with potential clinical applicability for monitoring Intensive Care Unit patients. We studied the trajectory of neurofilament light over a month in Intensive Care Unit patients diagnosed with severe COVID-19 and explored its relation to clinical outcomes and pathophysiological predictors. Data were collected over a month in 31 Intensive Care Unit patients (166 plasma samples) diagnosed with severe COVID-19 at Amsterdam University Medical Centre, and in the first week after emergency department admission in 297 patients with COVID-19 (635 plasma samples) admitted to Massachusetts General hospital. We observed that Neurofilament light increased in a non-linear fashion in the first month of Intensive Care Unit admission and increases faster in the first week of Intensive Care Unit admission when compared with mild-moderate COVID-19 cases. We observed that baseline Neurofilament light did not predict mortality when corrected for age and renal function. Peak neurofilament light levels were associated with a longer duration of delirium after extubation in Intensive Care Unit patients. Disease severity, as measured by the sequential organ failure score, was associated to higher neurofilament light values, and tumour necrosis factor alpha levels at baseline were associated with higher levels of neurofilament light at baseline and a faster increase during admission. These data illustrate the dynamics of Neurofilament light in a critical care setting and show associations to delirium, disease severity and markers for inflammation. Our study contributes to determine the clinical utility and interpretation of neurofilament light levels in Intensive Care Unit patients.

12.
Crit Care Med ; 50(11): 1607-1617, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35866658

RESUMEN

OBJECTIVES: To determine the diagnostic accuracy of lung ultrasound signs for both the diagnosis of interstitial syndrome and for the discrimination of noncardiogenic interstitial syndrome (NCIS) from cardiogenic pulmonary edema (CPE) in a mixed ICU population. DESIGN: A prospective diagnostic accuracy study with derivation and validation cohorts. SETTING: Three academic mixed ICUs in the Netherlands. PATIENTS: Consecutive adult ICU patients that received a lung ultrasound examination. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULT: The reference standard was the diagnosis of interstitial syndrome (NCIS or CPE) or noninterstitial syndromes (other pulmonary diagnoses and no pulmonary diagnoses) based on full post-hoc clinical chart review except lung ultrasound. The index test was a lung ultrasound examination performed and scored by a researcher blinded to clinical information. A total of 101 patients were included in the derivation and 122 in validation cohort. In the derivation cohort, patients with interstitial syndrome ( n = 56) were reliably discriminated from other patients based on the presence of a B-pattern (defined as greater than or equal to 3 B-lines in one frame) with an accuracy of 94.7% (sensitivity, 90.9%; specificity, 91.1%). For discrimination of NCIS ( n = 29) from CPE ( n = 27), the presence of bilateral pleural line abnormalities (at least two: fragmented, thickened or irregular) had the highest diagnostic accuracy (94.6%; sensitivity, 89.3%; specificity, 100%). A diagnostic algorithm (Bedside Lung Ultrasound for Interstitial Syndrome Hierarchy protocol) using B-pattern and bilateral pleural abnormalities had an accuracy of 0.86 (95% CI, 0.77-0.95) for diagnosis and discrimination of interstitial syndromes. In the validation cohort, which included 122 patients with interstitial syndrome, bilateral pleural line abnormalities discriminated NCIS ( n = 98) from CPE ( n = 24) with a sensitivity of 31% (95% CI, 21-40%) and a specificity of 100% (95% CI, 86-100%). CONCLUSIONS: Lung ultrasound can diagnose and discriminate interstitial syndromes in ICU patients with moderate-to-good accuracy. Pleural line abnormalities are highly specific for NCIS, but sensitivity is limited.


Asunto(s)
Pulmón , Edema Pulmonar , Adulto , Humanos , Unidades de Cuidados Intensivos , Pulmón/diagnóstico por imagen , Estudios Prospectivos , Sensibilidad y Especificidad , Ultrasonografía/métodos
13.
Chest ; 161(6): e337-e341, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35680312

RESUMEN

In critically ill patients receiving mechanical ventilation, expiratory muscles are recruited with high respiratory loading and/or low inspiratory muscle capacity. In this case report, we describe a previously unrecognized patient-ventilator dyssynchrony characterized by ventilator triggering by expiratory muscle relaxation, an observation that we termed expiratory muscle relaxation-induced ventilator triggering (ERIT). ERIT can be recognized with in-depth respiratory muscle monitoring as (1) an increase in gastric pressure (Pga) during expiration, resulting from expiratory muscle recruitment; (2) a drop in Pga (and hence, esophageal pressure) at the time of ventilator triggering; and (3) diaphragm electrical activity onset occurring after ventilator triggering. Future studies should focus on the incidence of ERIT and the impact in the patient receiving mechanical ventilation.


Asunto(s)
Enfermedades Neuromusculares , Humanos , Espiración/fisiología , Relajación Muscular , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Músculos Respiratorios/fisiología , Ventiladores Mecánicos
14.
ERJ Open Res ; 8(2)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35615411

RESUMEN

Early Career Members of Assembly 2 (Respiratory Intensive Care) attended the European Respiratory Society International Congress through a virtual platform in 2021. Sessions of interest to our assembly members included symposia on the implications of acute respiratory distress syndrome phenotyping on diagnosis and treatment, safe applications of noninvasive ventilation in hypoxaemic respiratory failure, and new developments in mechanical ventilation and weaning, and a guidelines session on applying high-flow therapy in acute respiratory failure. These sessions are summarised in this article.

15.
Am J Respir Crit Care Med ; 206(7): 846-856, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35616585

RESUMEN

Rationale: Bacterial lung microbiota are correlated with lung inflammation and acute respiratory distress syndrome (ARDS) and altered in severe coronavirus disease (COVID-19). However, the association between lung microbiota (including fungi) and resolution of ARDS in COVID-19 remains unclear. We hypothesized that increased lung bacterial and fungal burdens are related to nonresolving ARDS and mortality in COVID-19. Objectives: To determine the relation between lung microbiota and clinical outcomes of COVID-19-related ARDS. Methods: This observational cohort study enrolled mechanically ventilated patients with COVID-19. All patients had ARDS and underwent bronchoscopy with BAL. Lung microbiota were profiled using 16S rRNA gene sequencing and quantitative PCR targeting the 16S and 18S rRNA genes. Key features of lung microbiota (bacterial and fungal burden, α-diversity, and community composition) served as predictors. Our primary outcome was successful extubation adjudicated 60 days after intubation, analyzed using a competing risk regression model with mortality as competing risk. Measurements and Main Results: BAL samples of 114 unique patients with COVID-19 were analyzed. Patients with increased lung bacterial and fungal burden were less likely to be extubated (subdistribution hazard ratio, 0.64 [95% confidence interval, 0.42-0.97]; P = 0.034 and 0.59 [95% confidence interval, 0.42-0.83]; P = 0.0027 per log10 increase in bacterial and fungal burden, respectively) and had higher mortality (bacterial burden, P = 0.012; fungal burden, P = 0.0498). Lung microbiota composition was associated with successful extubation (P = 0.0045). Proinflammatory cytokines (e.g., tumor necrosis factor-α) were associated with the microbial burdens. Conclusions: Bacterial and fungal lung microbiota are related to nonresolving ARDS in COVID-19 and represent an important contributor to heterogeneity in COVID-19-related ARDS.


Asunto(s)
COVID-19 , Microbiota , Síndrome de Dificultad Respiratoria , COVID-19/complicaciones , Enfermedad Crítica , Humanos , Pulmón/microbiología , Microbiota/genética , ARN Ribosómico 16S/genética , Respiración Artificial , Factor de Necrosis Tumoral alfa
16.
ERJ Open Res ; 8(2)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35586450

RESUMEN

Background: The success of pulmonary endarterectomy (PEA) for chronic thromboembolic pulmonary hypertension (CTEPH) is usually evaluated by performing a right heart catheterisation (RHC). Here, we investigate whether residual pulmonary hypertension (PH) can be sufficiently excluded without the need for a RHC, by making use of early post-operative haemodynamics, or N-terminal pro-brain natriuretic peptide (NT-proBNP), cardiopulmonary exercise testing (CPET) and transthoracic echocardiography (TTE) 6 months after PEA. Methods: In an observational analysis, residual PH after PEA measured by RHC was related to haemodynamic data from the post-operative intensive care unit time and data from a 6-month follow-up assessment including NT-proBNP, TTE and CPET. After dichotomisation and univariate analysis, sensitivity, specificity, positive predictive value, negative predictive value (NPV) and likelihood ratios were calculated. Results: Thirty-six out of 92 included patients had residual PH 6 months after PEA (39%). Correlation between early post-operative and 6-month follow-up mean pulmonary artery pressure was moderate (Spearman rho 0.465, p<0.001). Early haemodynamics did not predict late success. NT-proBNP >300 ng·L-1 had insufficient NPV (0.71) to exclude residual PH. Probability for PH on TTE had a moderate NPV (0.74) for residual PH. Peak oxygen consumption (V'O2 ) <80% predicted had the highest sensitivity (0.85) and NPV (0.84) for residual PH. Conclusions: CPET 6 months after PEA, and to a lesser extent TTE, can be used to exclude residual CTEPH, thereby safely reducing the number of patients needing to undergo re-RHC after PEA.

17.
Anesthesiology ; 136(5): 749-762, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35320344

RESUMEN

BACKGROUND: The effect of fluid management strategies in critical illness-associated diaphragm weakness are unknown. This study hypothesized that a liberal fluid strategy induces diaphragm muscle fiber edema, leading to reduction in diaphragmatic force generation in the early phase of experimental pediatric acute respiratory distress syndrome in lambs. METHODS: Nineteen mechanically ventilated female lambs (2 to 6 weeks old) with experimental pediatric acute respiratory distress syndrome were randomized to either a strict restrictive fluid strategy with norepinephrine or a liberal fluid strategy. The fluid strategies were maintained throughout a 6-h period of mechanical ventilation. Transdiaphragmatic pressure was measured under different levels of positive end-expiratory pressure (between 5 and 20 cm H2O). Furthermore, diaphragmatic microcirculation, histology, inflammation, and oxidative stress were studied. RESULTS: Transdiaphragmatic pressures decreased more in the restrictive group (-9.6 cm H2O [95% CI, -14.4 to -4.8]) compared to the liberal group (-0.8 cm H2O [95% CI, -5.8 to 4.3]) during the application of 5 cm H2O positive end-expiratory pressure (P = 0.016) and during the application of 10 cm H2O positive end-expiratory pressure (-10.3 cm H2O [95% CI, -15.2 to -5.4] vs. -2.8 cm H2O [95% CI, -8.0 to 2.3]; P = 0.041). In addition, diaphragmatic microvessel density was decreased in the restrictive group compared to the liberal group (34.0 crossings [25th to 75th percentile, 22.0 to 42.0] vs. 46.0 [25th to 75th percentile, 43.5 to 54.0]; P = 0.015). The application of positive end-expiratory pressure itself decreased the diaphragmatic force generation in a dose-related way; increasing positive end-expiratory pressure from 5 to 20 cm H2O reduced transdiaphragmatic pressures with 27.3% (17.3 cm H2O [95% CI, 14.0 to 20.5] at positive end-expiratory pressure 5 cm H2O vs. 12.6 cm H2O [95% CI, 9.2 to 15.9] at positive end-expiratory pressure 20 cm H2O; P < 0.0001). The diaphragmatic histology, markers for inflammation, and oxidative stress were similar between the groups. CONCLUSIONS: Early fluid restriction decreases the force-generating capacity of the diaphragm and diaphragmatic microcirculation in the acute phase of pediatric acute respiratory distress syndrome. In addition, the application of positive end-expiratory pressure decreases the force-generating capacity of the diaphragm in a dose-related way. These observations provide new insights into the mechanisms of critical illness-associated diaphragm weakness.


Asunto(s)
Diafragma , Síndrome de Dificultad Respiratoria , Animales , Enfermedad Crítica , Femenino , Humanos , Inflamación , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria/terapia , Ovinos
18.
Clin Transl Sci ; 15(4): 854-858, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35029045

RESUMEN

Recently, we reported the phase II portion of the adaptive phase II/III PANAMO trial exploring potential benefit and safety of selectively blocking C5a with the monoclonal antibody vilobelimab (IFX-1) in patients with severe coronavirus disease 2019 (COVID-19). The potent anaphylatoxin C5a attracts neutrophils and monocytes to the infection site, causes tissue damage by oxidative radical formation and enzyme releases, and leads to activation of the coagulation system. Results demonstrated that C5a inhibition with vilobelimab was safe and secondary outcomes appeared in favor of vilobelimab. We now report the pharmacokinetic/pharmacodynamic (PK/PD) analysis of the phase II study. Between March 31 and April 24, 2020, 30 patients with severe COVID-19 pneumonia confirmed by real-time polymerase chain reaction were randomly assigned 1:1 to receive vilobelimab plus best supportive care or best supportive care only. Samples for measurement of vilobelimab, C3a and C5a blood concentrations were taken. Vilobelimab predose (trough) drug concentrations in plasma ranged from 84,846 to 248,592 ng/ml (571 to 1674 nM) with a geometric mean of 151,702 ng/ml (1022 nM) on day 2 and from 80,060 to 200,746 ng/ml (539 to 1352 nM) with a geometric mean of 139,503 ng/ml (939 nM) on day 8. After the first vilobelimab infusion, C5a concentrations were suppressed in the vilobelimab group (median 39.70 ng/ml 4.8 nM, IQR 33.20-45.55) as compared to the control group (median 158.53 ng/ml 19.1 nM, IQR 60.03-200.89, p = 0.0006). The suppression was maintained on day 8 (p = 0.001). The current PK/PD analysis shows that vilobelimab efficiently inhibits C5a in patients with severe COVID-19.


Asunto(s)
Anticuerpos Monoclonales , Tratamiento Farmacológico de COVID-19 , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Complemento C3a , Complemento C5a , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
Crit Care Med ; 50(2): 192-203, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100192

RESUMEN

OBJECTIVES: Lung- and diaphragm-protective ventilation is a novel concept that aims to limit the detrimental effects of mechanical ventilation on the diaphragm while remaining within limits of lung-protective ventilation. The premise is that low breathing effort under mechanical ventilation causes diaphragm atrophy, whereas excessive breathing effort induces diaphragm and lung injury. In a proof-of-concept study, we aimed to assess whether titration of inspiratory support based on diaphragm effort increases the time that patients have effort in a predefined "diaphragm-protective" range, without compromising lung-protective ventilation. DESIGN: Randomized clinical trial. SETTING: Mixed medical-surgical ICU in a tertiary academic hospital in the Netherlands. PATIENTS: Patients (n = 40) with respiratory failure ventilated in a partially-supported mode. INTERVENTIONS: In the intervention group, inspiratory support was titrated hourly to obtain transdiaphragmatic pressure swings in the predefined "diaphragm-protective" range (3-12 cm H2O). The control group received standard-of-care. MEASUREMENTS AND MAIN RESULTS: Transdiaphragmatic pressure, transpulmonary pressure, and tidal volume were monitored continuously for 24 hours in both groups. In the intervention group, more breaths were within "diaphragm-protective" range compared with the control group (median 81%; interquartile range [64-86%] vs 35% [16-60%], respectively; p < 0.001). Dynamic transpulmonary pressures (20.5 ± 7.1 vs 18.5 ± 7.0 cm H2O; p = 0.321) and tidal volumes (7.56 ± 1.47 vs 7.54 ± 1.22 mL/kg; p = 0.961) were not different in the intervention and control group, respectively. CONCLUSIONS: Titration of inspiratory support based on patient breathing effort greatly increased the time that patients had diaphragm effort in the predefined "diaphragm-protective" range without compromising tidal volumes and transpulmonary pressures. This study provides a strong rationale for further studies powered on patient-centered outcomes.


Asunto(s)
Diafragma/metabolismo , Pulmón/metabolismo , Respiración Artificial/normas , Trabajo Respiratorio/fisiología , Diafragma/fisiopatología , Femenino , Humanos , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/estadística & datos numéricos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Respiración Artificial/métodos , Respiración Artificial/estadística & datos numéricos , Insuficiencia Respiratoria/epidemiología , Insuficiencia Respiratoria/prevención & control , Insuficiencia Respiratoria/terapia , Trabajo Respiratorio/efectos de los fármacos
20.
Ultrasound J ; 14(1): 5, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35006383

RESUMEN

BACKGROUND: Lung ultrasound has established itself as an accurate diagnostic tool in different clinical settings. However, its effects on clinical-decision making are insufficiently described. This systematic review aims to investigate the impact of lung ultrasound, exclusively or as part of an integrated thoracic ultrasound examination, on clinical-decision making in different departments, especially the emergency department (ED), intensive care unit (ICU), and general ward (GW). METHODS: This systematic review was registered at PROSPERO (CRD42021242977). PubMed, EMBASE, and Web of Science were searched for original studies reporting changes in clinical-decision making (e.g. diagnosis, management, or therapy) after using lung ultrasound. Inclusion criteria were a recorded change of management (in percentage of cases) and with a clinical presentation to the ED, ICU, or GW. Studies were excluded if examinations were beyond the scope of thoracic ultrasound or to guide procedures. Mean changes with range (%) in clinical-decision making were reported. Methodological data on lung ultrasound were also collected. Study quality was scored using the Newcastle-Ottawa scale. RESULTS: A total of 13 studies were included: five studies on the ED (546 patients), five studies on the ICU (504 patients), two studies on the GW (1150 patients), and one study across all three wards (41 patients). Lung ultrasound changed the diagnosis in mean 33% (15-44%) and 44% (34-58%) of patients in the ED and ICU, respectively. Lung ultrasound changed the management in mean 48% (20-80%), 42% (30-68%) and 48% (48-48%) of patients in the ED, in the ICU and in the GW, respectively. Changes in management were non-invasive in 92% and 51% of patients in the ED and ICU, respectively. Lung ultrasound methodology was heterogeneous across studies. Risk of bias was moderate to high in all studies. CONCLUSIONS: Lung ultrasound, exclusively or as a part of thoracic ultrasound, has substantial impact on clinical-decision making by changing diagnosis and management in the EDs, ICUs, and GWs. The current evidence level and methodological heterogeneity underline the necessity for well-designed trials and standardization of methodology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...