Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Commun Signal ; 21(1): 267, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770940

RESUMEN

BACKGROUND: Adipose tissue has gained attention due to its potential paracrine role. Periprostatic adipose tissue surrounds the prostate and the prostatic urethra, and it is an essential player in prostate cancer progression. Since obesity is directly related to human tumor progression, and adipose tissue depots are one of the significant components of the tumor microenvironment, the molecular mediators of the communication between adipocytes and epithelial cells are in the spotlight. Although periprostatic white adipose tissue contributes to prostate cancer progression, brown adipose tissue (BAT), which has beneficial effects in metabolic pathologies, has been scarcely investigated concerning cancer progression. Given that adipose tissue is a target of androgen signaling, the actual role of androgen removal on the periprostatic adipose tissue was the aim of this work. METHODS: Surgical castration of the transgenic adenocarcinoma of the mouse prostate (TRAMP) was employed. By histology examination and software analysis, WAT and BAT tissue was quantified. 3T3-like adipocytes were used to study the role of Casodex® in modifying adipocyte differentiation and to investigate the function of the secretome of adipocytes on the proliferation of androgen-dependent and independent prostate cancer cells. Finally, the role of cell communication was assayed by TRAMP-C1 xenograft implanted in the presence of 3T3-like adipocytes. RESULTS: Androgen removal increases brown/beige adipose tissue in the fat immediately surrounding the prostate glands of TRAMP mice, concomitant with an adjustment of the metabolism. Castration increases body temperature, respiratory exchange rate, and energy expenditure. Also, in vitro, it is described that blocking androgen signaling by Casodex® increases the uncoupling protein 1 (UCP1) marker in 3T3-like adipocytes. Finally, the effect of brown/beige adipocyte secretome was studied on the proliferation of prostate cancer cells in vivo and in vitro. The secretome of brown/beige adipocytes reduces the proliferation of prostate cancer cells mediated partly by the secretion of extracellular vesicles. CONCLUSIONS: Consequently, we concluded that hampering androgen signaling plays a crucial role in the browning of the periprostatic adipose tissue. Also, the presence of brown adipocytes exhibits the opposite effect to that of white adipocytes in vitro regulating processes that govern the mechanisms of cell proliferation of prostate cancer cells. And finally, promoting the browning of adipose tissue in the periprostatic adipose tissue might be a way to handle prostate cancer cell progression. Video Abstract.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Andrógenos , Microambiente Tumoral , Castración
2.
J Med Case Rep ; 16(1): 217, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35655240

RESUMEN

BACKGROUND: Type 1 neurodegeneration with brain iron accumulation is a rare neurological disorder with estimated prevalence of one to two per million persons worldwide, characterized by progressive degeneration of basal ganglia, globus pallidus, and reticular part of substantia nigra, produced by brain iron accumulation due to a defect in the gene producing pantothenate kinase 2. Clinical presentations include dystonia, dysarthria, dysphagia, dementia, severe mental retardation, and severe movement disability at later stages. The characteristic pattern on brain magnetic resonance imaging shows the "eye of the tiger" sign. Treatment in late stages is mainly symptomatic. We report the case of a Cuban boy with high-severity brain iron accumulation, with positive clinical and imaging findings diagnosed in a late stage of the illness. This degree of severity has never been reported in Cuba and is rarely reported worldwide. CASE PRESENTATION: We present the case of a 19-year-old male white Cuban boy who presented to our department with features of spasticity, dystonia, gait difficulty, dysarthria, dysphagia, aggressiveness, and sleep disorders. He was diagnosed with pantothenate kinase-associated neurodegeneration on the basis of clinical findings and typical "eye of the tiger" pattern on brain magnetic resonance imaging. Detailed evaluation was carried out, and symptomatic treatment and physiotherapy were started with trihexyphenidyl, cabergoline, baclofen, and intramuscular botulinum neurotoxin as well as daily home sessions of passive stretching, weight bearing, and muscle massaging. At 3 months reevaluation, the patient showed a great improvement of motor function, with a decrease of dystonic symptoms, although language, cognition, and functional independence showed no improvement. The prognosis of the patient remains reserved. CONCLUSION: The diagnosis can be made based on the presence of clinical and imaging features. The presence of "eye-of-the-tiger" sign on magnetic resonance imaging must be considered a nearly pathognomonic sign of neurodegeneration with brain iron accumulation presence. Treatment after high-severity presentation remains directed toward symptomatic findings. Both dopamine agonists and anticholinergic agents are useful to treat motor symptoms, but there is not yet an effective treatment to stop the underlying degeneration. New therapeutic approaches are needed to counteract late stages of the disease and improve prognosis.


Asunto(s)
Trastornos de Deglución , Distonía , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Trastornos de Deglución/patología , Disartria , Distonía/tratamiento farmacológico , Distonía/etiología , Humanos , Hierro/uso terapéutico , Masculino , Adulto Joven
3.
Antioxidants (Basel) ; 11(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35204196

RESUMEN

Prostate cancer is the second leading cause of cancer in men across the globe. The prostate gland accounts for some unique glycolytic metabolic characteristics, which causes the metabolic features of prostate tumor initiation and progression to remain poorly characterized. The mitochondrial superoxide dismutase (SOD2) is one of the major redox metabolism regulators. This study points out SOD2 as one major regulator for both redox and glycolytic metabolism in prostate cancer. SOD2 overexpression increases glucose transporter GLUT-1 and glucose uptake. This is not an insulin-mediated effect and seems to be sex-dependent, being present in male mice only. This event concurs with a series of substantial metabolic rearrangements at cytoplasmic and mitochondrial level. A concomitant decrease in glycolytic and pentose phosphate activity, and an increase in electron transfer in the mitochondrial electronic chain, were observed. The Krebs Cycle is altered to produce amino-acid intermediates by decreasing succinate dehydrogenase. This in turn generates a 13-fold increase in the oncometabolite succinate. The protein energy sensor AMPK is decreased at basal and phosphorylated levels in response to glucose deprivation. Finally, preliminary results in prostate cancer patients indicate that glandular areas presenting high levels of SOD2 show a very strong correlation with GLUT-1 protein levels (R2 = 0.287 p-value < 0.0001), indicating that in patients there may exist an analogous phenomenon to those observed in cell culture and mice.

4.
Molecules ; 23(8)2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103453

RESUMEN

Melatonin, N-acetyl-5-methoxytryptamine, is an indole mainly synthesized from tryptophan in the pineal gland and secreted exclusively during the night in all the animals reported to date. While the pineal gland is the major source responsible for this night rise, it is not at all the exclusive production site and many other tissues and organs produce melatonin as well. Likewise, melatonin is not restricted to vertebrates, as its presence has been reported in almost all the phyla from protozoa to mammals. Melatonin displays a large set of functions including adaptation to light: dark cycles, free radical scavenging ability, antioxidant enzyme modulation, immunomodulatory actions or differentiation⁻proliferation regulatory effects, among others. However, in addition to those important functions, this evolutionary 'ancient' molecule still hides further tools with important cellular implications. The major goal of the present review is to discuss the data and experiments that have addressed the relationship between the indole and glucose. Classically, the pineal gland and a pinealectomy were associated with glucose homeostasis even before melatonin was chemically isolated. Numerous reports have provided the molecular components underlying the regulatory actions of melatonin on insulin secretion in pancreatic beta-cells, mainly involving membrane receptors MTNR1A/B, which would be partially responsible for the circadian rhythmicity of insulin in the organism. More recently, a new line of evidence has shown that glucose transporters GLUT/SLC2A are linked to melatonin uptake and its cellular internalization. Beside its binding to membrane receptors, melatonin transportation into the cytoplasm, required for its free radical scavenging abilities, still generates a great deal of debate. Thus, GLUT transporters might constitute at least one of the keys to explain the relationship between glucose and melatonin. These and other potential mechanisms responsible for such interaction are also discussed here.


Asunto(s)
Glucosa/metabolismo , Melatonina/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Metabolismo Energético , Humanos , Insulina/metabolismo , Glándula Pineal/metabolismo , Transporte de Proteínas , Vesículas Secretoras/metabolismo
5.
Redox Biol ; 17: 112-127, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29684818

RESUMEN

Glucose, chief metabolic support for cancer cell survival and growth, is mainly imported into cells by facilitated glucose transporters (GLUTs). The increase in glucose uptake along with tumor progression is due to an increment of facilitative glucose transporters as GLUT1. GLUT1 prevents cell death of cancer cells caused by growth factors deprivation, but there is scarce information about its role on the damage caused by glucose deprivation, which usually occurs within the core of a growing tumor. In prostate cancer (PCa), GLUT1 is found in the most aggressive tumors, and it is regulated by androgens. To study the response of androgen-sensitive and insensitive PCa cells to glucose deprivation and the role of GLUT1 on survival mechanisms, androgen-sensitive LNCaP and castration-resistant LNCaP-R cells were employed. Results demonstrated that glucose deprivation induced a necrotic type of cell death which is prevented by antioxidants. Androgen-sensitive cells show a higher resistance to cell death triggered by glucose deprivation than castration-resistant cells. Glucose removal causes an increment of H2O2, an activation of androgen receptor (AR) and a stimulation of AMP-activated protein kinase activity. In addition, glucose removal increases GLUT1 production in androgen sensitive PCa cells. GLUT1 ectopic overexpression makes PCa cells more resistant to glucose deprivation and oxidative stress-induced cell death. Under glucose deprivation, GLUT1 overexpressing PCa cells sustains mitochondrial SOD2 activity, compromised after glucose removal, and significantly increases reduced glutathione (GSH). In conclusion, androgen-sensitive PCa cells are more resistant to glucose deprivation-induced cell death by a GLUT1 upregulation through an enhancement of reduced glutathione levels.


Asunto(s)
Transportador de Glucosa de Tipo 1/genética , Estrés Oxidativo/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Superóxido Dismutasa/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/química , Masculino , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Superóxido Dismutasa/metabolismo
7.
Int J Cancer ; 142(12): 2414-2424, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29159872

RESUMEN

One of the hallmarks of cancer cells is the increased ability to acquire nutrients, particularly glucose and glutamine. Proliferating cells need precursors for cell growth and NADPH reducing equivalents for survival. The principal responsible for glucose uptake is facilitative glucose transporters (GLUTs), which usually are overexpressed in cancer cells. Besides their role in glucose uptake, GLUT transporters are able to transport other compounds such as dehydroascorbic acid or uric acid. They play a major role in tumor progression and cellular processes such as regulated cell death. The prostate gland has the particular characteristic of being more glycolytic than other non-pathological tissues given an accumulation of citrate in the seminal fluid and the inhibition of m-aconitase that affects to tricarboxylic acid cycle. In prostate cancer (PCa), androgens increase glucose uptake, upregulate GLUT transporters such as GLUT1 and GLUT3 and stimulate AMP-activated protein kinase pathway, suggesting a possible connection between glycolytic and androgenic signaling. Interestingly, diabetes is not a risk factor for PCa, as it is in other cancers, while insulin stimulates progression and insulin-like growth factor 1 pathway plays an important role in PCa progression. It was recently found that PCa cells overexpress GLUT4 and, more importantly, that it seems to be related to the castration-resistant prostate cancer (CRPC) phenotype, although little is known about its participation in tumor progression. This review will focus on the role of GLUT transporters along with PCa progression, and the involvement of GLUT4 on CRPC phenotype transition would be considered.


Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Humanos , Masculino
8.
Int J Mol Sci ; 18(8)2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28933733

RESUMEN

The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the "Warburg effect" only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Glucólisis/efectos de los fármacos , Melatonina/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Adenosina Trifosfato/genética , Andrógenos/metabolismo , Isótopos de Carbono/química , Línea Celular Tumoral , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Marcaje Isotópico , Masculino , Metabolómica , Fosforilación Oxidativa/efectos de los fármacos , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética
9.
Cell Mol Life Sci ; 74(21): 3927-3940, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28828619

RESUMEN

Melatonin is a well-known, nighttime-produced indole found in bacteria, eukaryotic unicellulars, animals or vascular plants. In vertebrates, melatonin is the major product of the pineal gland, which accounts for its increase in serum during the dark phase, but it is also produced by many other organs and cell types. Such a wide distribution is consistent with its multiple and well-described functions which include from the circadian regulation and adaptation to seasonal variations to immunomodulatory and oncostatic actions in different types of tumors. The discovery of its antioxidant properties in the early 1990s opened a new field of potential protective functions in multiple tissues. A special mention should be made regarding the nervous system, where the indole is considered a major neuroprotector. Furthermore, mitochondria appear as one of the most important targets for the indole's protective actions. Melatonin's mechanisms of action vary from the direct molecular interaction with free radicals (free radical scavenger) to the binding to membrane (MLT1A and MLT1B) or nuclear receptors (RZR/RORα). Receptor binding has been associated with some, but not all of the indole functions reported to date. Recently, two new mechanisms of cellular uptake involving the facilitative glucose transporters GLUT/SLC2A and the proton-driven oligopeptide transporter PEPT1/2 have been reported. Here we discuss the potential importance that these newly discovered transport systems could have in determining the actions of melatonin, particularly in the mitochondria. We also argue the relative importance of passive diffusion vs active transport in different parts of the cell.


Asunto(s)
Antioxidantes/farmacología , Radicales Libres/metabolismo , Melatonina/farmacología , Mitocondrias/metabolismo , Animales , Transporte Biológico , Humanos , Mitocondrias/efectos de los fármacos
10.
Redox Biol ; 12: 634-647, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28391184

RESUMEN

Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin) and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer.


Asunto(s)
Curcumina/farmacología , Melatonina/farmacología , Neoplasias de la Próstata/metabolismo , Silimarina/farmacología , Estilbenos/farmacología , Tiorredoxinas/metabolismo , Apoptosis , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Resveratrol , Silibina
11.
Antioxidants (Basel) ; 6(1)2017 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-28165396

RESUMEN

Apart from alkaloids, bioactive properties of Uncaria tomentosa L. have been attributed to its phenolic constituents. Although there are some reports concerning low-molecular-weight polyphenols in U. tomentosa, its polymeric phenolic composition has been scarcely studied. In this study, phenolic-rich extracts from leaves, stems, bark and wood (n = 14) of Uncaria tomentosa plants from several regions of Costa Rica were obtained and analysed in respect to their proanthocyanidin profile determined by a quadrupole-time-of-flight analyser (ESI-QTOF MS). Main structural characteristics found for U. tomentosa proanthocyanidins were: (a) monomer composition, including pure procyanidins (only composed of (epi)catechin units) and propelargonidins (only composed of (epi)afzelechin units) as well as mixed proanthocyanidins; and (b) degree of polymerization, from 3 up to 11 units. In addition, U. tomentosa phenolic extracts were found to exhibit reasonable antioxidant capacity (ORAC (Oxygen Radical Absorbance Capacity) values between 1.5 and 18.8 mmol TE/g) and antimicrobial activity against potential respiratory pathogens (minimum IC50 of 133 µg/mL). There were also found to be particularly cytotoxic to gastric adenocarcinoma AGS and colon adenocarcinoma SW620 cell lines. The results state the particularities of U. tomentosa proanthocyanidins and suggest the potential value of these extracts with prospective use as functional ingredients.

12.
J Pineal Res ; 62(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27736013

RESUMEN

Treatment of prostate cancer (PCa), a leading cause of cancer among males, lacks successful strategies especially in advanced, hormone-refractory stages. Some clinical studies have shown an increase in neuroendocrine-like cells parallel to the tumor progression but their exact role is a matter of debate. The prostate is a well-known target for melatonin, which reduces PCa cells proliferation and induces neuroendocrine differentiation. To evaluate the mechanisms underlying the indole effects on neuroendocrine differentiation and its impact on PCa progression, we used a cell culture model (LNCaP) and a murine model (TRAMP). Persistent ERK1/2 activation was found in both, melatonin and androgen-deprived cells. Melatonin blocked nuclear translocation of androgen receptor (AR), thus confirming anti-androgenic actions of the indole. However, using a comparative genome microarray to check the differentially expressed genes in control, melatonin, or androgen-deprived cells, some differences were found, suggesting a more complex role of the indole. By comparing control cells with those treated with melatonin or depleted of androgen, a cluster of 26 differentially expressed genes (±2.5-fold) was found. Kallikreins (KLK)2 and KLK3 (PSA) were dramatically downregulated by both treatments whereas IGFBP3 and IGF1R were up- and downregulated, respectively, in both experimental groups, thus showing a role for IGF in both scenarios. Finally, melatonin prolonged the survival of TRAMP mice by 33% when given at the beginning or at advances stages of the tumor. Serum IGFBP3 was significantly elevated by the indole in early stages of the tumor, confirming in vivo the role of the IGF signaling in the oncostatic action of the indole.


Asunto(s)
Adenocarcinoma/patología , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Melatonina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias de la Próstata/patología , Adenocarcinoma/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Melatonina/farmacología , Ratones , Ratones Transgénicos , Microscopía Confocal , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Neoplasias de la Próstata/metabolismo
13.
J Biomed Nanotechnol ; 13(2): 167-79, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29377647

RESUMEN

In this study, the in vitro uptake by fibroblasts and in vivo biodistribution of 15 nm 11-mercaptoundecanoicacid-protected gold nanoparticles (AuNPs-MUA) and 3 nm glutathione- and 3 nm bovine serum albumin-protected gold nanoclusters (AuNCs@GSH and AuNCs@BSA, respectively) were evaluated. In vitro cell viability was examined after gold nanoparticle treatment for 48 h, based on MTT assays and analyses of morphological structure, the cycle cell, cellular doubling time, and the gold concentration in cells. No potential toxicity was observed at any studied concentration (up to 10 ppm) for AuNCs@GSH and AuNCs@BSA, whereas lower cell viability was observed for AuNPs-MUA at 10 ppm than for other treatments. Neither morphological damage nor modifications to the cell cycle and doubling time were detected after contact with nanoparticles. Associations between cells and AuNPs and AuNCs were demonstrated by inductively coupled plasma mass spectrometry (ICP-MS). AuNCs@GSH exhibited fluorescence emission at 611 nm, whereas AuNCs@BSA showed a band at 640 nm. These properties were employed to confirm their associations with cells by fluorescence confocal microscopy; both clusters were observed in cells and maintained their original fluorescence. In vivo assays were performed using 9 male mice treated with 1.70 µg Au/g body weight gold nanoparticles for 24 h. ICP-MS measurements showed a different biodistribution for each type of nanoparticle; AuNPs-MUA mainly accumulated in the brain, AuNCs@GSH in the kidney, and AuNCs@BSA in the liver and spleen. Spleen indexes were not affected by nanoparticle treatment; however, AuNCs@BSA increased the thymus index significantly from 1.28 to 1.79, indicating an immune response. These nanoparticles have great potential as organ-specific drug carriers and for diagnosis, photothermal therapy, and imaging.


Asunto(s)
Oro/química , Oro/farmacocinética , Nanopartículas del Metal/química , Animales , Supervivencia Celular/efectos de los fármacos , Glutatión , Oro/toxicidad , Hígado/química , Hígado/metabolismo , Masculino , Nanopartículas del Metal/toxicidad , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Albúmina Sérica Bovina , Bazo/química , Bazo/metabolismo , Distribución Tisular
14.
Free Radic Biol Med ; 85: 45-55, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25866291

RESUMEN

The role of manganese-dependent superoxide dismutase (SOD2/MnSOD) during tumor progression has been studied for several decades with controversial results. While SOD2 downregulation was initially associated with tumor initiation and was proposed as a tumor suppressor gene, recent studies have reported that SOD2 might favor tumor progression and dissemination. To our knowledge this is the first time that changes in SOD2 expression in three different types of tumors, i.e., prostate, lung, and colon cancer, are studied by analyzing both SOD2 mRNA and protein levels in a total of 246 patients' samples. In prostate samples, SOD2 protein levels were also increased, especially in middle stage tumors. In the case of colon and lung tumors both mRNA and protein SOD2 levels were increased in malignant tissues compared to those in nontumor samples. More importantly, all metastases analyzed showed increased levels of SOD2 when compared to those of normal primary tissue and healthy adjacent tissue. Together, these results suggest that a common redox imbalance in these three types of tumor occurs at intermediate stages which then might favor migration and invasion, leading to a more aggressive cancer type. Consequently, the ratios SOD2/catalase and SOD2/Gpx1 could be considered as potential markers during progression from tumor growth to metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Catalasa/metabolismo , Neoplasias del Colon/patología , Glutatión Peroxidasa/metabolismo , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Neoplasias de la Próstata/patología , Superóxido Dismutasa/metabolismo , Estudios de Casos y Controles , Neoplasias del Colon/enzimología , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Masculino , Neoplasias de la Próstata/enzimología , ARN Mensajero/genética , Superóxido Dismutasa/genética , Glutatión Peroxidasa GPX1
15.
J Pineal Res ; 58(2): 234-50, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25612238

RESUMEN

Melatonin is present in a multitude of taxa and it has a broad range of biological functions, from synchronizing circadian rhythms to detoxifying free radicals. Some functions of melatonin are mediated by its membrane receptors but others are receptor-independent. For the latter, melatonin must enter into the cell. Melatonin is a derivative of the amino acid tryptophan and reportedly easily crosses biological membranes due to its amphipathic nature. However, the mechanism by which melatonin enters into cells remains unknown. Changes in redox state, endocytosis pathways, multidrug resistance, glycoproteins or a variety of strategies have no effect on melatonin uptake. Herein, it is demonstrated that members of the SLC2/GLUT family glucose transporters have a central role in melatonin uptake. When studied by docking simulation, it is found that melatonin interacts at the same location in GLUT1 where glucose does. Furthermore, glucose concentration and the presence of competitive ligands of GLUT1 affect the concentration of melatonin into cells. As a regulatory mechanism, melatonin reduces the uptake of glucose and modifies the expression of GLUT1 transporter in prostate cancer cells. More importantly, glucose supplementation promotes prostate cancer progression in TRAMP mice, while melatonin attenuated glucose-induced tumor progression and prolonged the lifespan of tumor-bearing mice. This is the first time that a facilitated transport of melatonin is suggested. In fact, the important role of glucose transporters and glucose metabolism in cell fate might explain some of the diverse functions described for melatonin.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Melatonina/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Glucosa/efectos adversos , Glucosa/metabolismo , Humanos , Masculino , Melatonina/uso terapéutico , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Ratas
16.
Biomed Chromatogr ; 29(6): 843-52, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25346068

RESUMEN

A straightforward and common analytical method for α-tocopherol (αT) determination in various biological samples, including plasma, red blood cells (RBC), tissues and cultured cell lines, was developed and validated, using a reverse phase-chromatographic method (RP-HPLC). Even though many chromatographic methods for αT determination have been reported, most of them require readjustment when applied to different types of samples. Thus, an effective and simple method for αT determination in different biological matrices is still necessary, specifically for translational research. This method was applied using a C18 column (250 × 4.6 mm, 5 µm particle size) under isocratic elution with MeOH:ACN:H2 O (90:9:1 v/v/v) at a flow rate of 1 mL/min and detected using photodiode array at 293 nm. Linearity (r >0.9997) was observed for standard calibration with inter- and intraday variation of standard <4%. Lower limits of detection and quantification for αT in this assay were 0.091 and 0.305 µg/mL respectively. Validation proved the method to be selective, linear, accurate and precise. The method was successfully applied in great variety of biological samples, that is, human and mouse plasma, RBCs, murine tissues and human/mouse/rat cultured cell lines. More importantly, a single protocol of extraction and detection can be applied, making this method very convenient for standardization of different types of samples.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , alfa-Tocoferol/sangre , Animales , Química Encefálica , Células Cultivadas , Eritrocitos , Humanos , Modelos Lineales , Hígado/química , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , alfa-Tocoferol/análisis , alfa-Tocoferol/química
17.
PLoS One ; 9(10): e109257, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25275380

RESUMEN

The indolamine melatonin (MEL) is described as an antioxidant and a free radical scavenger. However occasionally, the indoleamine has been reported to increase free radicals with insufficient mechanistic explanation. In an attempt to find a reason for those controversial results, a potential mechanism that explains MEL prooxidant activity is investigated. The current controversy about redox detection methods has prompted us to search a possible interaction between MEL and dichlorodihydrofluorescein (DCFH2), perhaps the most widely fluorescence probe employed for free radicals detection in cellular models. Here, it is demonstrated that melatonin potentiates the photooxidation of DCFH2 in a cell-free system, increasing the production of its fluorescent metabolite. Indeed, MEL works as an antioxidant scavenging hydroxyl radicals in this system. Thus, this reaction between MEL and DCFH2 produces N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), a biogenic amine with antioxidant properties too. This reaction is O2 and light dependent and it is prevented by antioxidants such as N-acetylcysteine or ascorbic acid. Furthermore, when DCFH2 has been employed to evaluate antioxidant or prooxidant activities of MEL in cellular models it is confirmed that it works as an antioxidant but these results can be modulated by light misleading to a prooxidant conclusion. In conclusion, here is demonstrated that DCFH2, light and melatonin interact and results obtained using these fluorescence probes in studies with melatonin have to be carefully interpreted.


Asunto(s)
Antioxidantes/metabolismo , Fluoresceínas/metabolismo , Kinuramina/análogos & derivados , Melatonina/metabolismo , Oxidantes/metabolismo , Línea Celular , Sistema Libre de Células/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Kinuramina/metabolismo , Luz , Oxidación-Reducción , Estrés Oxidativo
18.
Endocrinology ; 155(9): 3238-50, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24932809

RESUMEN

Cancer cells show different metabolic requirements from normal cells. In prostate cancer, particularly, glycolytic metabolism differs in androgen-responsive and nonresponsive cells. In addition, some natural compounds with antiproliferative activities are able to modify glucose entry into cells by either modulating glucose transporter (GLUT) expression or by altering glucose binding. The aim of this work was to study the regulation of some GLUTs (GLUT1 and GLUT4) in both androgen-sensitive (LNCaP) and -insensitive (PC-3) prostate cancer cells by 4 structurally different flavonoids (ie, genistein, phloretin, apigenin, and daidzein). Glucose uptake was measured using nonradiolabeled 2-deoxyglucose. The evaluation of protein levels as well as subcellular distribution of GLUT1/4 were analyzed by Western blot and immunocytochemistry, respectively. Androgen-insensitive LNCaP-R and androgen-sensitive PC-3-AR cells were used to study the effect of androgen signaling. Additionally, a docking simulation was employed to compare interactions between flavonoids and XylE, a bacterial homolog of GLUT1 to -4. Results show for the first time the presence of functionally relevant GLUT4 in prostate cancer cells. Furthermore, differences in GLUT1 and GLUT4 levels and glucose uptake were found, without differences on subcellular distribution, after incubation with flavonoids. Docking simulation showed that all compounds interact with the same location of transporters. More importantly, differences between androgen-sensitive and -insensitive prostate cancer cells were found in both GLUT protein levels and glucose uptake. Thus, phenotypic characteristics of prostate cancer cells are responsible for the different effects of these flavonoids in glucose uptake and in GLUT expression rather than their structural differences, with the most effective in reducing cell growth being the highest in modifying glucose uptake and GLUT levels.


Asunto(s)
Andrógenos/metabolismo , Flavonoides/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Neoplasias de la Próstata/metabolismo , Sitios de Unión , Línea Celular Tumoral , Flavonoides/química , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/química , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 4/química , Transportador de Glucosa de Tipo 4/genética , Humanos , Masculino , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata/genética
19.
J Pineal Res ; 54(1): 33-45, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22738066

RESUMEN

Melatonin has antiproliferative properties in prostate cancer cells. Melatonin reduces proliferation without increasing apoptosis, and it promotes cell differentiation into a neuroendocrine phenotype. Because neuroendocrine cells displayed an androgen-independent growth and high resistance to radiotherapy and chemotherapy, the role of molecules that induce neuroendocrine differentiation was questioned in terms of their usefulness as oncostatic agents. By using human epithelial androgen-dependent and androgen-independent prostate cancer cells, the role of melatonin in drug-induced apoptosis was studied after acute treatments. In addition to cytokines such as hrTNF-alpha and TRAIL, chemotherapeutic compounds, including doxorubicin, docetaxel, or etoposide, were employed in combination with melatonin to promote cell death. Melatonin promotes cell toxicity caused by cytokines without influencing the actions of chemotherapeutic agents. In addition, antioxidant properties of melatonin were confirmed in prostate cancer cells. However, its ability to increase cell death caused by cytokines was independent of the redox changes. Finally, phenotypic changes caused by chronic treatment with the indole, that is, neuroendocrine differentiation, make cells significantly more sensitive to cytokines and slightly more sensitive to some chemotherapeutic compounds. Thus, melatonin is a good inhibitor of the proliferation of prostate cancer cells, promoting phenotypic changes that do not increase survival mechanisms and make cells more sensitive to cytokines such as TNF-alpha or TRAIL.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Melatonina/farmacología , Citocinas/farmacología , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/farmacología
20.
Antioxid Redox Signal ; 16(11): 1295-322, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22117137

RESUMEN

SIGNIFICANCE: Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. RECENT ADVANCES: ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], activator protein-1, hypoxia-inducible factor-1α, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, γ-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. CRITICAL ISSUES: These statements suggest both "upside" (cancer-suppressing) and "downside" (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-α, inflammation, and NF-κB, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. FUTURE DIRECTIONS: the various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed.


Asunto(s)
Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transformación Celular Neoplásica , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos , Humanos , Neoplasias/prevención & control , Neoplasias/terapia , Tolerancia a Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...