Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Endocrinol Metab ; 108(3): 680-687, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36239000

RESUMEN

CONTEXT: Congenital hyperinsulinism (HI) is characterized by inappropriate insulin secretion despite low blood glucose. Persistent HI is often monogenic, with the majority of cases diagnosed in infancy. Less is known about the contribution of monogenic forms of disease in those presenting in childhood. OBJECTIVE: We investigated the likelihood of finding a genetic cause in childhood-onset HI and explored potential factors leading to later age at presentation of disease. METHODS: We screened known disease-causing genes in 1848 individuals with HI, referred for genetic testing as part of routine clinical care. Individuals were classified as infancy-onset (diagnosed with HI < 12 months of age) or childhood-onset (diagnosed at age 1-16 years). We assessed clinical characteristics and the genotypes of individuals with monogenic HI diagnosed in childhood to gain insights into the later age at diagnosis of HI in these children. RESULTS: We identified the monogenic cause in 24% (n = 42/173) of the childhood-onset HI cohort; this was significantly lower than the proportion of genetic diagnoses in infancy-onset cases (74.5% [n = 1248/1675], P < 0.00001). Most (75%) individuals with genetically confirmed childhood-onset HI were diagnosed before 2.7 years, suggesting these cases represent the tail end of the normal distribution in age at diagnosis. This is supported by the finding that 81% of the variants identified in the childhood-onset cohort were detected in those diagnosed in infancy. CONCLUSION: We have shown that monogenic HI is an important cause of hyperinsulinism presenting outside of infancy. Genetic testing should be considered in children with persistent hyperinsulinism, regardless of age at diagnosis.


Asunto(s)
Hiperinsulinismo Congénito , Hiperinsulinismo , Hipoglucemia , Adolescente , Niño , Preescolar , Humanos , Lactante , Glucemia , Hiperinsulinismo Congénito/diagnóstico , Hiperinsulinismo Congénito/genética , Pruebas Genéticas , Hiperinsulinismo/diagnóstico , Hiperinsulinismo/genética , Hiperinsulinismo/complicaciones , Enfermedades Pancreáticas/genética , Hipoglucemia/diagnóstico , Hipoglucemia/genética
2.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36333503

RESUMEN

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Asunto(s)
Hiperinsulinismo Congénito , Células Secretoras de Insulina , Humanos , Hexoquinasa/genética , Hexoquinasa/metabolismo , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética
3.
Front Endocrinol (Lausanne) ; 13: 873254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872984

RESUMEN

Congenital hyperinsulinism is characterised by the inappropriate release of insulin during hypoglycaemia. This potentially life-threatening disorder can occur in isolation, or present as a feature of syndromic disease. Establishing the underlying aetiology of the hyperinsulinism is critical for guiding medical management of this condition especially in children with diazoxide-unresponsive hyperinsulinism where the underlying genetics determines whether focal or diffuse pancreatic disease is present. Disease-causing single nucleotide variants affecting over 30 genes are known to cause persistent hyperinsulinism with mutations in the KATP channel genes (ABCC8 and KCNJ11) most commonly identified in children with severe persistent disease. Defects in methylation, changes in chromosome number, and large deletions and duplications disrupting multiple genes are also well described in congenital hyperinsulinism, further highlighting the genetic heterogeneity of this condition. Next-generation sequencing has revolutionised the approach to genetic testing for congenital hyperinsulinism with targeted gene panels, exome, and genome sequencing being highly sensitive methods for the analysis of multiple disease genes in a single reaction. It should though be recognised that limitations remain with next-generation sequencing with no single application able to detect all reported forms of genetic variation. This is an important consideration for hyperinsulinism genetic testing as comprehensive screening may require multiple investigations.


Asunto(s)
Hiperinsulinismo Congénito , Niño , Hiperinsulinismo Congénito/diagnóstico , Hiperinsulinismo Congénito/genética , Diazóxido , Humanos , Insulina/metabolismo , Canales KATP , Mutación
4.
Pediatr Diabetes ; 23(4): 457-461, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35294086

RESUMEN

BACKGROUND: Hyperinsulinism results from inappropriate insulin secretion during hypoglycaemia. Down syndrome is causally linked to a number of endocrine disorders including Type 1 diabetes and neonatal diabetes. We noted a high number of individuals with Down syndrome referred for hyperinsulinism genetic testing, and therefore aimed to investigate whether the prevalence of Down syndrome was increased in our hyperinsulinism cohort compared to the population. METHODS: We identified individuals with Down syndrome referred for hyperinsulinism genetic testing to the Exeter Genomics Laboratory between 2008 and 2020. We sequenced the known hyperinsulinism genes in all individuals and investigated their clinical features. RESULTS: We identified 11 individuals with Down syndrome in a cohort of 2011 patients referred for genetic testing for hyperinsulinism. This represents an increased prevalence compared to the population (2.5/2011 expected vs. 11/2011 observed, p = 6.8 × 10-5 ). A pathogenic ABCC8 mutation was identified in one of the 11 individuals. Of the remaining 10 individuals, five had non-genetic risk factors for hyperinsulinism resulting from the Down syndrome phenotype: intrauterine growth restriction, prematurity, gastric/oesophageal surgery, and asparaginase treatment for leukaemia. For five individuals no risk factors for hypoglycaemia were reported although two of these individuals had transient hyperinsulinism and one was lost to follow-up. CONCLUSIONS: Down syndrome is more common in patients with hyperinsulinism than in the population. This is likely due to an increased burden of non-genetic risk factors resulting from the Down syndrome phenotype. Down syndrome should not preclude genetic testing as coincidental monogenic hyperinsulinism and Down syndrome is possible.


Asunto(s)
Hiperinsulinismo Congénito , Síndrome de Down , Hiperinsulinismo Congénito/complicaciones , Hiperinsulinismo Congénito/diagnóstico , Hiperinsulinismo Congénito/epidemiología , Síndrome de Down/complicaciones , Síndrome de Down/diagnóstico , Síndrome de Down/epidemiología , Pruebas Genéticas , Humanos , Mutación , Derivación y Consulta , Factores de Riesgo
5.
Eur J Endocrinol ; 185(6): 813-818, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34633981

RESUMEN

OBJECTIVE: Mutations in the KATP channel genes, ABCC8 and KCNJ11, are the most common cause of congenital hyperinsulinism. The diagnosis of KATP-hyperinsulinism is important for the clinical management of the condition. We aimed to determine the clinical features that help to identify KATP-hyperinsulinism at diagnosis. DESIGN: We studied 761 individuals with KATP-hyperinsulinism and 862 probands with hyperinsulinism of unknown aetiology diagnosed before 6 months of age. All were referred as part of routine clinical care. METHODS: We compared the clinical features of KATP-hyperinsulinism and unknown hyperinsulinism cases. We performed logistic regression and receiver operator characteristic (ROC) analysis to identify the features that predict KATP-hyperinsulinism. RESULTS: Higher birth weight, diazoxide unresponsiveness and diagnosis in the first week of life were independently associated with KATP-hyperinsulinism (adjusted odds ratio: 4.5 (95% CI: 3.4-5.9), 0.09 (0.06-0.13) and 3.3 (2.0-5.0) respectively). Birth weight and diazoxide unresponsiveness were additive and highly discriminatory for identifying KATP-hyperinsulinism (ROC area under the curve for birth weight 0.80, diazoxide responsiveness 0.77, and together 0.88, 95% CI: 0.85-0.90). In this study, 86% born large for gestation and 78% born appropriate for gestation and who did not respond to diazoxide treatment had KATP-hyperinsulinism. In contrast, of those individuals born small for gestation, none who were diazoxide responsive and only 4% of those who were diazoxide unresponsive had KATP-hyperinsulinism. CONCLUSIONS: Individuals with hyperinsulinism born appropriate or large for gestation and unresponsive to diazoxide treatment are most likely to have an ABCC8 or KCNJ11 mutation. These patients should be prioritised for genetic testing of KATP channel genes.


Asunto(s)
Peso al Nacer , Hiperinsulinismo Congénito/genética , Diazóxido/administración & dosificación , Canales KATP/genética , Mutación , Canales de Potasio de Rectificación Interna/genética , Receptores de Sulfonilureas/genética , Hiperinsulinismo Congénito/diagnóstico , Femenino , Humanos , Recién Nacido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...