Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 23(1): 124-130, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884672

RESUMEN

Bicontinuous microstructures are essential to the function of diverse natural and synthetic systems. Their synthesis has been based on two approaches: arrested phase separation or self-assembly of block copolymers. The former is attractive for its chemical simplicity and the latter, for its thermodynamic robustness. Here we introduce elastic microphase separation (EMPS) as an alternative approach to make bicontinuous microstructures. Conceptually, EMPS balances the molecular-scale forces that drive demixing with large-scale elasticity to encode a thermodynamic length scale. This process features a continuous phase transition, reversible without hysteresis. Practically, EMPS is triggered by simply supersaturating an elastomeric matrix with a liquid, resulting in uniform bicontinuous materials with a well-defined microscopic length scale tuned by the matrix stiffness. The versatility of EMPS is further demonstrated by fabricating bicontinuous materials with superior mechanical properties and controlled anisotropy and microstructural gradients. Overall, EMPS presents a robust alternative for the bulk fabrication of homogeneous bicontinuous materials.

2.
Soft Matter ; 19(23): 4385-4390, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37272410

RESUMEN

Inhomogeneously swollen elastomers are an emergent class of materials, comprising elastic matrices with inclusion phases in the form of microgel particles or osmolytes. Inclusion phases can undergo osmotically driven swelling and deswelling over orders of magnitude. In the swollen state, the inclusions typically have negligible Young's modulus, and the matrix is strongly deformed. In that regime, the effective mechanical properties of the composite are governed by the matrix. Laying the groundwork for a generic analysis of inhomogeneously swollen elastomers, we develop a model based on incremental mean-field homogenization of a hyperelastic matrix. The framework allows for the computation of the macroscopic effective stiffness for arbitrary hyperelastic matrix materials. For an in-depth quantification of the local effective stiffness, we extend the concept of elastic stiffness maps to incompressible materials. For strain-stiffening materials, stiffness maps in the swollen state highlight pronounced radial stiffening with a non-monotonic change in stiffness in the hoop direction. Stiffening characteristics are sensitive to the form of constitutive models, which may be exploited in the design of hydrated actuators, soft composites and metamaterials. For validation, we apply this framework to a Yeoh material, and compare to recently published data. Model predictions agree well with experimental data on elastomers with highly swollen embedded microgel particles. We identify three distinct regimes related to an increasing degree of particle swelling: first, an initial decrease in composite stiffness is attributed to particle softening upon liquid intake. Second, dilute particle swelling leads to matrix stiffening dominating over particle softening, resulting in an increase in composite stiffness. Third, for swelling degrees beyond the dilute limit, particle interactions dominate further matrix stiffening.

3.
Macromolecules ; 56(4): 1303-1310, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36874533

RESUMEN

Fracture phenomena in soft materials span multiple length and time scales. This poses a major challenge in computational modeling and predictive materials design. To pass quantitatively from molecular to continuum scales, a precise representation of the material response at the molecular level is vital. Here, we derive the nonlinear elastic response and fracture characteristics of individual siloxane molecules using molecular dynamics (MD) studies. For short chains, we find deviations from classical scalings for both the effective stiffness and mean chain rupture times. A simple model of a nonuniform chain of Kuhn segments captures the observed effect and agrees well with MD data. We find that the dominating fracture mechanism depends on the applied force scale in a nonmonotonic fashion. This analysis suggests that common polydimethylsiloxane (PDMS) networks fail at cross-linking points. Our results can be readily lumped into coarse-grained models. Although focusing on PDMS as a model system, our study presents a general procedure to pass beyond the window of accessible rupture times in MD studies employing mean first passage time theory, which can be exploited for arbitrary molecular systems.

4.
Soft Matter ; 18(37): 7229-7235, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36102833

RESUMEN

Inspired by the cellular design of plant tissue, we present an approach to make versatile, tough, highly water-swelling composites. We embed highly swelling hydrogel particles inside tough, water-permeable, elastomeric matrices. The resulting composites, which we call hydroelastomers, combine the properties of their parent phases. From their hydrogel component, the composites inherit the ability to highly swell in water. From the elastomeric component, the composites inherit excellent stretchability and fracture toughness, while showing little softening as they swell. Indeed, the fracture properties of the composite match those of the best-performing, tough hydrogels, exhibiting fracture energies of up to 10 kJ m-2. Our composites are straightforward to fabricate, based on widely-available materials, and can easily be molded or extruded to form shapes with complex swelling geometries. Furthermore, there is a large design space available for making hydroelastomers, since one can use any hydrogel as the dispersed phase in the composite, including hydrogels with stimuli-responsiveness. These features make hydroelastomers excellent candidates for use in soft robotics and swelling-based actuation, or as shape-morphing materials, while also being useful as hydrogel replacements in other fields.


Asunto(s)
Hidrogeles , Agua
6.
Phys Rev Lett ; 127(20): 208001, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860052

RESUMEN

When stretched in one direction, most solids shrink in the transverse directions. In soft silicone gels, however, we observe that small-scale topographical features grow upon stretching. A quantitative analysis of the topography shows that this counterintuitive response is nearly linear, allowing us to tackle it through a small-strain analysis. We find that the surprising increase of small-scale topography with stretch is due to a delicate interplay of the bulk and surface responses to strain. Specifically, we find that surface tension changes as the material is deformed. This response is expected on general grounds for solid materials, but challenges the standard description of gel and elastomer surfaces.

7.
Phys Rev Lett ; 126(15): 158004, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929254

RESUMEN

Anisotropically wetting substrates enable useful control of droplet behavior across a range of applications. Usually, these involve chemically or physically patterning the substrate surface, or applying gradients in properties like temperature or electrical field. Here, we show that a flat, stretched, uniform soft substrate also exhibits asymmetric wetting, both in terms of how droplets slide and in their static shape. Droplet dynamics are strongly affected by stretch: glycerol droplets on silicone substrates with a 23% stretch slide 67% faster in the direction parallel to the applied stretch than in the perpendicular direction. Contrary to classical wetting theory, static droplets in equilibrium appear elongated, oriented parallel to the stretch direction. Both effects arise from droplet-induced deformations of the substrate near the contact line.

8.
J Biomech ; 48(16): 4287-96, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26592436

RESUMEN

A key element of the cardiac cycle of the human heart is the opening and closing of the four valves. However, the material properties of the leaflet tissues, which fundamentally contribute to determine the mechanical response of the valves, are still an open field of research. The main contribution of the present study is to provide a complete experimental data set for porcine heart valve samples spanning all valve and leaflet types under tensile loading. The tests show a fair degree of reproducibility and are clearly indicative of a number of fundamental tissue properties, including a progressively stiffening response with increasing elongation. We then propose a simple anisotropic constitutive model, which is fitted to the experimental data set, showing a reasonable interspecimen variability. Furthermore, we present a dynamic finite element analysis of the aortic valve to show the direct usability of the obtained material parameters in computational simulations.


Asunto(s)
Válvula Aórtica/fisiología , Válvula Mitral/fisiología , Válvula Pulmonar/fisiología , Válvula Tricúspide/fisiología , Anciano , Animales , Anisotropía , Fenómenos Biomecánicos , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Masculino , Modelos Anatómicos , Reproducibilidad de los Resultados , Sus scrofa , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...