Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Commun ; 15(1): 1294, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378781

RESUMEN

Aneuploidies, and in particular, trisomies represent the most common genetic aberrations observed in human genetics today. To explore the presence of trisomies in historic and prehistoric populations we screen nearly 10,000 ancient human individuals for the presence of three copies of any of the target autosomes. We find clear genetic evidence for six cases of trisomy 21 (Down syndrome) and one case of trisomy 18 (Edwards syndrome), and all cases are present in infant or perinatal burials. We perform comparative osteological examinations of the skeletal remains and find overlapping skeletal markers, many of which are consistent with these syndromes. Interestingly, three cases of trisomy 21, and the case of trisomy 18 were detected in two contemporaneous sites in early Iron Age Spain (800-400 BCE), potentially suggesting a higher frequency of burials of trisomy carriers in those societies. Notably, the care with which the burials were conducted, and the items found with these individuals indicate that ancient societies likely acknowledged these individuals with trisomy 18 and 21 as members of their communities, from the perspective of burial practice.


Asunto(s)
Trastornos de los Cromosomas , Síndrome de Down , Embarazo , Femenino , Humanos , Síndrome de Down/genética , Trisomía/genética , Síndrome de la Trisomía 18/genética , Trastornos de los Cromosomas/genética , ADN Antiguo , Síndrome de la Trisomía 13
2.
medRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076931

RESUMEN

A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 360k Finns spanning up to 50 years of individuals' lifetimes. Individuals with a high genetic generalized epilepsy PRS (PRSGGE) in FinnGen had an increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.55 per PRSGGE standard deviation [SD]) across their lifetime and after unspecified seizure events. Effect sizes of epilepsy PRSs were comparable to effect sizes in clinically curated data supporting our EHR-derived epilepsy diagnoses. Within 10 years after an unspecified seizure, the GGE rate was 37% when PRSGGE > 2 SD compared to 5.6% when PRSGGE < -2 SD. The effect of PRSGGE was even larger on GGE subtypes of idiopathic generalized epilepsy (IGE) (HR 2.1 per SD PRSGGE). We further report significantly larger effects of PRSGGE on epilepsy in females and in younger age groups. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). We found PRSGGE specifically associated with GGE in comparison with >2000 independent diseases while PRSNAFE was also associated with other diseases than NAFE such as back pain. Here, we show that epilepsy specific PRSs have good discriminative ability after a first seizure event i.e. in circumstances where the prior probability of epilepsy is high outlining a potential to serve as biomarkers for an epilepsy diagnosis.

3.
Res Sq ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37886494

RESUMEN

Chronic kidney disease (CKD) is a complex disorder that causes a gradual loss of kidney function, affecting approximately 9.1% of the world's population. Here, we use a soft-clustering algorithm to deconstruct its genetic heterogeneity. First, we selected 322 CKD-associated independent genetic variants from published genome-wide association studies (GWAS) and added association results for 229 traits from the GWAS catalog. We then applied nonnegative matrix factorization (NMF) to discover overlapping clusters of related traits and variants. We computed cluster-specific polygenic scores and validated each cluster with a phenome-wide association study (PheWAS) on the BioMe biobank (n=31,701). NMF identified nine clusters that reflect different aspects of CKD, with the top-weighted traits signifying areas such as kidney function, type 2 diabetes (T2D), and body weight. For most clusters, the top-weighted traits were confirmed in the PheWAS analysis. Results were found to be more significant in the cross-ancestry analysis, although significant ancestry-specific associations were also identified. While all alleles were associated with a decreased kidney function, associations with CKD-related diseases (e.g., T2D) were found only for a smaller subset of variants and differed across genetic ancestry groups. Our findings leverage genetics to gain insights into the underlying biology of CKD and investigate population-specific associations.

4.
Am J Hum Genet ; 110(7): 1110-1122, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37369202

RESUMEN

Previous studies suggested that severe epilepsies, e.g., developmental and epileptic encephalopathies (DEEs), are mainly caused by ultra-rare de novo genetic variants. For milder disease, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 control individuals. Here, we separately analyzed three different groups of epilepsies: severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in control individuals with an allele count ≥ 1 and a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD ≥ 20), and to have an odds ratio in individuals with epilepsy ≥ 2. We identified genes enriched with QRVs primarily in NAFE (n = 72), followed by GGE (n = 32) and DEE (n = 21). This suggests that rare variants may play a more important role for causality of NAFE than for DEE. Moreover, we found that genes harboring QRVs, e.g., HSGP2, FLNA, or TNC, encode proteins that are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE that occur also in the general population, while in DEE and GGE, the contribution of such variants appears more limited.


Asunto(s)
Epilepsia Generalizada , Humanos , Epilepsia Generalizada/genética , Fenotipo , Alelos , Encéfalo , Frecuencia de los Genes/genética
5.
Am J Hum Genet ; 110(6): 998-1007, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207645

RESUMEN

While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Síndrome de Prader-Willi , Adolescente , Humanos , Trastorno del Espectro Autista/genética , Hiperfagia/genética , Hiperfagia/complicaciones , Trastornos del Neurodesarrollo/genética , Obesidad/complicaciones , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/genética , Proteínas
6.
BMC Med Genomics ; 16(1): 73, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020303

RESUMEN

PURPOSE: Due to the increasing application of genome analysis and interpretation in medical disciplines, professionals require adequate education. Here, we present the implementation of personal genotyping as an educational tool in two genomics courses targeting Digital Health students at the Hasso Plattner Institute (HPI) and medical students at the Technical University of Munich (TUM). METHODS: We compared and evaluated the courses and the students' perceptions on the course setup using questionnaires. RESULTS: During the course, students changed their attitudes towards genotyping (HPI: 79% [15 of 19], TUM: 47% [25 of 53]). Predominantly, students became more critical of personal genotyping (HPI: 73% [11 of 15], TUM: 72% [18 of 25]) and most students stated that genetic analyses should not be allowed without genetic counseling (HPI: 79% [15 of 19], TUM: 70% [37 of 53]). Students found the personal genotyping component useful (HPI: 89% [17 of 19], TUM: 92% [49 of 53]) and recommended its inclusion in future courses (HPI: 95% [18 of 19], TUM: 98% [52 of 53]). CONCLUSION: Students perceived the personal genotyping component as valuable in the described genomics courses. The implementation described here can serve as an example for future courses in Europe.


Asunto(s)
Pruebas Genéticas , Estudiantes , Humanos , Universidades , Genómica/educación , Escolaridad , Encuestas y Cuestionarios
7.
medRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36974069

RESUMEN

Previous studies suggested that severe epilepsies e.g., developmental and epileptic encephalopathies (DEE) are mainly caused by ultra-rare de novo genetic variants. For milder phenotypes, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 controls. Here, we separately analyzed three different groups of epilepsies : severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in controls at a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD≥20), and to have an odds ratio in epilepsy cases ≥2. We identified genes enriched with QRVs in DEE (n=21), NAFE (n=72), and GGE (n=32) - the number of enriched genes are found greatest in NAFE and least in DEE. This suggests that rare variants may play a more important role for causality of NAFE than in DEE. Moreover, we found that QRV-carrying genes e.g., HSGP2, FLNA or TNC are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE, while in DEE and GGE, the contribution of such variants appears more limited.

9.
Nature ; 613(7944): 508-518, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653562

RESUMEN

Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10-11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.


Asunto(s)
Enfermedad , Frecuencia de los Genes , Fenotipo , Humanos , Persona de Mediana Edad , Enfermedad/genética , Estonia , Finlandia , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Metaanálisis como Asunto , Reino Unido , Población Blanca/genética
10.
Nature ; 604(7906): 509-516, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396579

RESUMEN

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Asunto(s)
Mutación , Trastornos del Neurodesarrollo , Esquizofrenia , Estudios de Casos y Controles , Exoma , Predisposición Genética a la Enfermedad/genética , Humanos , Trastornos del Neurodesarrollo/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
11.
Brain ; 145(12): 4275-4286, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35037686

RESUMEN

Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).


Asunto(s)
Canalopatías , Epilepsia , Enfermedades del Sistema Nervioso Periférico , Canales de Sodio Activados por Voltaje , Animales , Canalopatías/genética , Canales de Sodio Activados por Voltaje/genética , Epilepsia/genética , Fenotipo , Mamíferos
12.
Brain ; 145(5): 1839-1853, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919654

RESUMEN

CACNA1I is implicated in the susceptibility to schizophrenia by large-scale genetic association studies of single nucleotide polymorphisms. However, the channelopathy of CACNA1I in schizophrenia is unknown. CACNA1I encodes CaV3.3, a neuronal voltage-gated calcium channel that underlies a subtype of T-type current that is important for neuronal excitability in the thalamic reticular nucleus and other regions of the brain. Here, we present an extensive functional characterization of 57 naturally occurring rare and common missense variants of CACNA1I derived from a Swedish schizophrenia cohort of more than 10 000 individuals. Our analysis of this allelic series of coding CACNA1I variants revealed that reduced CaV3.3 channel current density was the dominant phenotype associated with rare CACNA1I coding alleles derived from control subjects, whereas rare CACNA1I alleles from schizophrenia patients encoded CaV3.3 channels with altered responses to voltages. CACNA1I variants associated with altered current density primarily impact the ionic channel pore and those associated with altered responses to voltage impact the voltage-sensing domain. CaV3.3 variants associated with altered voltage dependence of the CaV3.3 channel and those associated with peak current density deficits were significantly segregated across affected and unaffected groups (Fisher's exact test, P = 0.034). Our results, together with recent data from the SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) cohort, suggest that reduced CaV3.3 function may protect against schizophrenia risk in rare cases. We subsequently modelled the effect of the biophysical properties of CaV3.3 channel variants on thalamic reticular nucleus excitability and found that compared with common variants, ultrarare CaV3.3-coding variants derived from control subjects significantly decreased thalamic reticular nucleus excitability (P = 0.011). When all rare variants were analysed, there was a non-significant trend between variants that reduced thalamic reticular nucleus excitability and variants that either had no effect or increased thalamic reticular nucleus excitability across disease status. Taken together, the results of our functional analysis of an allelic series of >50 CACNA1I variants in a schizophrenia cohort reveal that loss of function of CaV3.3 is a molecular phenotype associated with reduced disease risk burden, and our approach may serve as a template strategy for channelopathies in polygenic disorders.


Asunto(s)
Canales de Calcio Tipo T , Canalopatías , Esquizofrenia , Alelos , Canales de Calcio Tipo T/genética , Canalopatías/genética , Humanos , Mutación Missense , Esquizofrenia/genética , Suecia
13.
Sci Adv ; 7(39): eabi7673, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34559560

RESUMEN

The origin, development, and legacy of the enigmatic Etruscan civilization from the central region of the Italian peninsula known as Etruria have been debated for centuries. Here we report a genomic time transect of 82 individuals spanning almost two millennia (800 BCE to 1000 CE) across Etruria and southern Italy. During the Iron Age, we detect a component of Indo-European­associated steppe ancestry and the lack of recent Anatolian-related admixture among the putative non­Indo-European­speaking Etruscans. Despite comprising diverse individuals of central European, northern African, and Near Eastern ancestry, the local gene pool is largely maintained across the first millennium BCE. This drastically changes during the Roman Imperial period where we report an abrupt population-wide shift to ~50% admixture with eastern Mediterranean ancestry. Last, we identify northern European components appearing in central Italy during the Early Middle Ages, which thus formed the genetic landscape of present-day Italian populations.

14.
J Lipid Res ; 62: 100105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34390703

RESUMEN

The leptin receptor (Lepr) pathway is important for food intake regulation, energy expenditure, and body weight. Mutations in leptin and the Lepr have been shown to cause early-onset severe obesity in mice and humans. In studies with C57BL/6NCrl mice, we found a mouse with extreme obesity. To identify a putative spontaneous new form of monogenic obesity, we performed backcross studies with this mouse followed by a quantitative trait locus (QTL) analysis and sequencing of the selected chromosomal QTL region. We thereby identified a novel Lepr mutation (C57BL/6N-LeprL536Hfs*6-1NKB), which is located at chromosome 4, exon 11 within the CRH2-leptin-binding site. Compared with C57BL/6N mice, LeprL536Hfs*6 develop early onset obesity and their body weight exceeds that of Leprdb/db mice at an age of 30 weeks. Similar to Leprdb/db mice, the LeprL536Hfs*6 model is characterized by hyperphagia, obesity, lower energy expenditure and activity, hyperglycemia, and hyperinsulinemia compared with C57BL/6N mice. Crossing Leprdb/wt with LeprL536Hfs*6/wt mice results in compound heterozygous LeprL536Hfs*6/db mice, which develop even higher body weight and fat mass than both homozygous Leprdb/db and LeprL536Hfs*6 mice. Compound heterozygous Lepr deficiency affecting functionally different regions of the Lepr causes more severe obesity than the parental homozygous mutations.


Asunto(s)
Obesidad/genética , Receptores de Leptina/genética , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Mutación
15.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34114611

RESUMEN

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Asunto(s)
Epilepsia/genética , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto Joven
16.
Proc Natl Acad Sci U S A ; 117(45): 28201-28211, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106425

RESUMEN

Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations' positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants' pathogenicity in terms of the perturbed molecular mechanisms.


Asunto(s)
Mutación Missense/genética , Proteínas/química , Proteínas/genética , Secuencia de Aminoácidos , Proteína BRCA1/química , Proteína BRCA1/genética , Biología Computacional/métodos , Humanos , Aprendizaje Automático , Modelos Moleculares , Mutación Missense/fisiología , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/genética , Conformación Proteica , Proteínas/fisiología
17.
Sci Transl Med ; 12(556)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32801145

RESUMEN

Malfunctions of voltage-gated sodium and calcium channels (encoded by SCNxA and CACNA1x family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) that often corresponds not only to clinical disease manifestations but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. On the basis of known gene-disease mechanisms of 19 different diseases, we inferred LOF (n = 518) and GOF (n = 309) likely pathogenic variants from the disease phenotypes of variant carriers. By training a machine learning model on sequence- and structure-based features, we predicted LOF or GOF effects [area under the receiver operating characteristics curve (ROC) = 0.85] of likely pathogenic missense variants. Our LOF versus GOF prediction corresponded to molecular LOF versus GOF effects for 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and was validated in exome-wide data from 21,703 cases and 128,957 controls. We showed respective regional clustering of inferred LOF and GOF nucleotide variants across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCNxA/CACNA1x family genes.


Asunto(s)
Canales de Calcio , Preparaciones Farmacéuticas , Mutación Missense/genética , Fenotipo , Sodio
18.
J Mol Med (Berl) ; 98(8): 1139-1148, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32620998

RESUMEN

Progranulin is a glycoprotein marking chronic inflammation in obesity and type 2 diabetes. Previous studies suggested PSRC1 (proline and serine rich coiled-coil 1) to be a target of genetic variants associated with serum progranulin levels. We aimed to identify potentially functional variants and characterize their role in regulation of PSRC1. Phylogenetic module complexity analysis (PMCA) prioritized four polymorphisms (rs12740374, rs629301, rs660240, rs7528419) altering transcription factor binding sites with an overall score for potential regulatory function of Sall > 7.0. The effects of these variants on transcriptional activity and binding of transcription factors were tested by luciferase reporter and electrophoretic mobility shift assays (EMSA). In parallel, blood DNA promoter methylation of two regions was tested in subjects with a very high (N = 100) or a very low (N = 100) serum progranulin. Luciferase assays revealed lower activities in vectors carrying the rs629301-A compared with the C allele. Moreover, EMSA indicated a different binding pattern for the two rs629301 alleles, with an additional prominent band for the A allele, which was finally confirmed with the supershift for the Yin Yang 1 transcription factor (YY1). Subjects with high progranulin levels manifested a significantly higher mean DNA methylation (P < 1 × 10-7) in one promoter region, which was in line with a significantly lower PSRC1 mRNA expression levels in blood (P = 1 × 10-3). Consistently, rs629301-A allele was associated with lower PSRC1 mRNA expression (P < 1 × 10-7). Our data suggest that the progranulin-associated variant rs629301 modifies the transcription of PSRC1 through alteration of YY1 binding capacity. DNA methylation studies further support the role of PSRC1 in regulation of progranulin serum levels. KEY MESSAGES: PSRC1 (proline and serine rich coiled-coil 1) SNPs are associated with serum progranulin levels. rs629301 regulates PSRC1 expression by affecting Yin Yang 1 transcription factor (YY1) binding. PSRC1 is also epigenetically regulated in subjects with high progranulin levels.


Asunto(s)
Regulación de la Expresión Génica , Variación Genética , Progranulinas/genética , Transcripción Genética , Adulto , Anciano , Alelos , Línea Celular , Metilación de ADN , Epigénesis Genética , Femenino , Genes Reporteros , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Polimorfismo de Nucleótido Simple , Progranulinas/sangre , Progranulinas/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción YY1/metabolismo
19.
Nucleic Acids Res ; 48(W1): W132-W139, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32402084

RESUMEN

Human genome sequencing efforts have greatly expanded, and a plethora of missense variants identified both in patients and in the general population is now publicly accessible. Interpretation of the molecular-level effect of missense variants, however, remains challenging and requires a particular investigation of amino acid substitutions in the context of protein structure and function. Answers to questions like 'Is a variant perturbing a site involved in key macromolecular interactions and/or cellular signaling?', or 'Is a variant changing an amino acid located at the protein core or part of a cluster of known pathogenic mutations in 3D?' are crucial. Motivated by these needs, we developed MISCAST (missense variant to protein structure analysis web suite; http://miscast.broadinstitute.org/). MISCAST is an interactive and user-friendly web server to visualize and analyze missense variants in protein sequence and structure space. Additionally, a comprehensive set of protein structural and functional features have been aggregated in MISCAST from multiple databases, and displayed on structures alongside the variants to provide users with the biological context of the variant location in an integrated platform. We further made the annotated data and protein structures readily downloadable from MISCAST to foster advanced offline analysis of missense variants by a wide biological community.


Asunto(s)
Mutación Missense , Conformación Proteica , Programas Informáticos , Humanos , Internet , Proteínas/química , Proteínas/genética
20.
Gut ; 69(10): 1796-1806, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32317332

RESUMEN

OBJECTIVE: Bacterial translocation to various organs including human adipose tissue (AT) due to increased intestinal permeability remains poorly understood. We hypothesised that: (1) bacterial presence is highly tissue specific and (2) related in composition and quantity to immune inflammatory and metabolic burden. DESIGN: We quantified and sequenced the bacterial 16S rRNA gene in blood and AT samples (omental, mesenteric and subcutaneous) of 75 subjects with obesity with or without type 2 diabetes (T2D) and used catalysed reporter deposition (CARD) - fluorescence in situ hybridisation (FISH) to detect bacteria in AT. RESULTS: Under stringent experimental and bioinformatic control for contaminants, bacterial DNA was detected in blood and omental, subcutaneous and mesenteric AT samples in the range of 0.1 to 5 pg/µg DNA isolate. Moreover, CARD-FISH allowed the detection of living, AT-borne bacteria. Proteobacteria and Firmicutes were the predominant phyla, and bacterial quantity was associated with immune cell infiltration, inflammatory and metabolic parameters in a tissue-specific manner. Bacterial composition differed between subjects with and without T2D and was associated with related clinical measures, including systemic and tissues-specific inflammatory markers. Finally, treatment of adipocytes with bacterial DNA in vitro stimulated the expression of TNFA and IL6. CONCLUSIONS: Our study provides contaminant aware evidence for the presence of bacteria and bacterial DNA in several ATs in obesity and T2D and suggests an important role of bacteria in initiating and sustaining local AT subclinical inflammation and therefore impacting metabolic sequelae of obesity.


Asunto(s)
Tejido Adiposo , Traslocación Bacteriana/inmunología , ADN Bacteriano/aislamiento & purificación , Diabetes Mellitus Tipo 2 , Firmicutes/aislamiento & purificación , Obesidad , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/sangre , Tejido Adiposo/inmunología , Tejido Adiposo/microbiología , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/inmunología , Femenino , Humanos , Inflamación/inmunología , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...