Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biosci Bioeng ; 137(6): 413-419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38485553

RESUMEN

Uracil-thymine dehydrogenase (UTDH), which catalyzes the irreversible oxidation of uracil to barbituric acid in oxidative pyrimidine metabolism, was purified from Rhodococcus erythropolis JCM 3132. The finding of unusual stabilizing conditions (pH 11, in the presence of NADP+ or NADPH) enabled the enzyme purification. The purified enzyme was a heteromer consisting of three different subunits. The enzyme catalyzed oxidation of uracil to barbituric acid with artificial electron acceptors such as methylene blue, phenazine methosulfate, benzoquinone, and α-naphthoquinone; however, NAD+, NADP+, flavin adenine dinucleotide, and flavin mononucleotide did not serve as electron acceptors. The enzyme acted not only on uracil and thymine but also on 5-halogen-substituted uracil and hydroxypyrimidine (pyrimidone), while dihydropyrimidine, which is an intermediate in reductive pyrimidine metabolism, and purine did not serve as substrates. The activity of UTDH was enhanced by cerium ions, and this activation was observed with all combinations of substrates and electron acceptors.


Asunto(s)
Oxidación-Reducción , Pirimidinas , Rhodococcus , Uracilo , Uracilo/metabolismo , Uracilo/química , Pirimidinas/metabolismo , Rhodococcus/enzimología , NADP/metabolismo , Azul de Metileno/metabolismo , Azul de Metileno/química , Barbitúricos/metabolismo , Barbitúricos/química , Benzoquinonas/metabolismo , Benzoquinonas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Concentración de Iones de Hidrógeno , Timina/metabolismo , Timina/química , Especificidad por Sustrato , Metosulfato de Metilfenazonio/metabolismo , Metosulfato de Metilfenazonio/química
2.
J Agric Food Chem ; 72(10): 5339-5347, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417143

RESUMEN

S-Substituted-l-cysteine sulfoxides are valuable compounds that are contained in plants. Particularly, (+)-alliin and its degraded products have gained significant attention because of their human health benefits. However, (+)-alliin production has been limited to extraction from plants and chemical synthesis; both methods have drawbacks in terms of stability and safety. Here, we proposed the enzymatic cascade reaction for synthesizing (+)-alliin from readily available substrates. To achieve a one-pot (+)-alliin production, we constructed Escherichia coli coexpressing the genes encoding tryptophan synthase from Aeromonas hydrophila ssp. hydrophila NBRC 3820 and l-isoleucine hydroxylase from Bacillus thuringiensis 2e2 for the biocatalyst. Deletion of tryptophanase gene in E. coli increased the yield about 2-fold. Under optimized conditions, (+)-alliin accumulation reached 110 mM, which is the highest productivity thus far. Moreover, natural and unnatural S-substituted-l-cysteine sulfoxides were synthesized by applying various thiols to the cascade reaction. These results indicate that the developed bioprocess would enable the supply of diverse S-substituted-l-cysteine sulfoxides.


Asunto(s)
Cisteína , Cisteína/análogos & derivados , Escherichia coli , Humanos , Cisteína/metabolismo , Escherichia coli/genética , Sulfóxidos/metabolismo , Ingeniería Genética
3.
Elife ; 122023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022136

RESUMEN

Life requires ribonucleotide reduction for de novo synthesis of deoxyribonucleotides. As ribonucleotide reduction has on occasion been lost in parasites and endosymbionts, which are instead dependent on their host for deoxyribonucleotide synthesis, it should in principle be possible to knock this process out if growth media are supplemented with deoxyribonucleosides. We report the creation of a strain of Escherichia coli where all three ribonucleotide reductase operons have been deleted following introduction of a broad spectrum deoxyribonucleoside kinase from Mycoplasma mycoides. Our strain shows slowed but substantial growth in the presence of deoxyribonucleosides. Under limiting deoxyribonucleoside levels, we observe a distinctive filamentous cell morphology, where cells grow but do not appear to divide regularly. Finally, we examined whether our lines can adapt to limited supplies of deoxyribonucleosides, as might occur in the switch from de novo synthesis to dependence on host production during the evolution of parasitism or endosymbiosis. Over the course of an evolution experiment, we observe a 25-fold reduction in the minimum concentration of exogenous deoxyribonucleosides necessary for growth. Genome analysis reveals that several replicate lines carry mutations in deoB and cdd. deoB codes for phosphopentomutase, a key part of the deoxyriboaldolase pathway, which has been hypothesised as an alternative to ribonucleotide reduction for deoxyribonucleotide synthesis. Rather than complementing the loss of ribonucleotide reduction, our experiments reveal that mutations appear that reduce or eliminate the capacity for this pathway to catabolise deoxyribonucleotides, thus preventing their loss via central metabolism. Mutational inactivation of both deoB and cdd is also observed in a number of obligate intracellular bacteria that have lost ribonucleotide reduction. We conclude that our experiments recapitulate key evolutionary steps in the adaptation to life without ribonucleotide reduction.


Asunto(s)
Ribonucleótido Reductasas , Ribonucleótidos , Ribonucleótidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Simbiosis , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Desoxirribonucleótidos/metabolismo , Desoxirribonucleósidos/metabolismo
4.
Biosci Biotechnol Biochem ; 86(9): 1247-1254, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35793557

RESUMEN

Rhizobium radiobacter C58 was found to convert 4-hydroxyisoleucine (HIL) and 2-amino-3-methyl-4-ketopentanoate (AMKP), bioactive oxidative derivatives of l-isoleucine, in both cases producing 2-aminobutyrate. Three native enzymes involved in these metabolisms were purified by column chromatography and successfully identified. In this strain, HIL was converted to acetaldehyde and 2-aminobutyrate by coupling action of the transaminase rrIlvE and the aldolase HkpA. AMKP was also converted to acetate and 2-aminobutyrate by coupling action of rrIlvE and a hydrolase DkhA. In the multi-enzymatic reactions, HkpA catalyzes the retro-aldol reaction of 4-hydroxy-3-methyl-2-ketopentanoate into acetaldehyde and 2-ketobutyrate, and DkhA catalyzes hydrolytic cleavage of the carbon-carbon bond of 2,4-diketo-3-methylpentanoate into acetate and 2-ketobutyrate. rrIlvE catalyzes reversible transamination between HIL and 4-hydroxy-3-methyl-2-ketopentanoate, AMKP and 2,4-diketo-3-methylpentanoate, and 2-ketobutyrate and 2-aminobutyrate. The results suggested that the conversion activity of Rhizobium bacteria plays an important role in the complex biological metabolic networks associated with HIL and AMKP.


Asunto(s)
Agrobacterium tumefaciens , Isoleucina , Acetaldehído , Agrobacterium tumefaciens/metabolismo , Carbono , Isoleucina/metabolismo , Estrés Oxidativo
5.
J Biosci Bioeng ; 134(3): 182-186, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35764447

RESUMEN

A wide variety of S-substituted cysteine derivatives occur in plant metabolites. For example, S-allyl-l-cysteine (SAC), mainly contained in garlic, gathers huge interest because of its favorable bioactivities for human health. However, conventional methods for preparing SAC suffer from several drawbacks with regard to efficiency and toxicity, which highlights the need for improved processes for SAC synthesis. This study aims to develop a novel bioprocess to produce SAC by microbial enzymes from easily available substrates. We found that Escherichia coli had the ability to synthesize SAC from allyl mercaptan, pyruvic acid, and ammonium sulfate. An enzyme purification through 3-step column chromatography, followed by determination of the N-terminal amino acid sequence revealed that tryptophanase (TnaA) was the enzyme responsible for SAC formation. Although the enzyme catalyzed the reversible reaction for synthesizing and degrading SAC, the degradation proceeded significantly faster than the synthesis. Interestingly, TnaA catalyzed the synthesis of a wide range of S-substituted cysteines with alkyl chains or aromatic rings, some of which are present in Allium and Petiveria plants. Our results showed a novel substrate specificity of TnaA toward various S-substituted cysteine. TnaA is a promising biocatalyst for developing a new process to supply various valuable S-substituted cysteine derivatives for medicinal and health-promoting applications.


Asunto(s)
Cisteína , Escherichia coli , Cisteína/análogos & derivados , Cisteína/metabolismo , Escherichia coli/metabolismo , Humanos , Especificidad por Sustrato , Triptofanasa/metabolismo
6.
Biosci Biotechnol Biochem ; 86(6): 792-799, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35388878

RESUMEN

S-Allyl-l-cysteine (SAC) has received much interest due to its beneficial effects on human health. To satisfy the increasing demand for SAC, this study aims to develop a valuable culturing method for microbial screening synthesizing SAC from readily available materials. Although tryptophan synthase is a promising enzyme for SAC synthesis, its expression in microorganisms is strictly regulated by environmental l-tryptophan. Thus, we constructed a semisynthetic medium lacking l-tryptophan using casamino acids. This medium successfully enhanced the SAC-synthesizing activity of Lactococcus lactis ssp. cremoris NBRC 100676. In addition, microorganisms with high SAC-synthesizing activity were screened by the same medium. Food-related Klebsiella pneumoniae K-15 and Pantoea agglomerans P-3 were found to have a significantly increased SAC-synthesizing activity. The SAC-producing process established in this study is shorter in duration than the conventional garlic aging method. Furthermore, this study proposes a promising alternative strategy for producing food-grade SAC by microorganisms.


Asunto(s)
Cisteína , Ajo , Antioxidantes/metabolismo , Cisteína/química , Ajo/química , Humanos , Triptófano/metabolismo
7.
Commun Biol ; 4(1): 16, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398074

RESUMEN

The high-valent iron-oxo species formed in the non-heme diiron enzymes have high oxidative reactivity and catalyze difficult chemical reactions. Although the hydroxylation of inert methyl groups is an industrially promising reaction, utilizing non-heme diiron enzymes as such a biocatalyst has been difficult. Here we show a three-component monooxygenase system for the selective terminal hydroxylation of α-aminoisobutyric acid (Aib) into α-methyl-D-serine. It consists of the hydroxylase component, AibH1H2, and the electron transfer component. Aib hydroxylation is the initial step of Aib catabolism in Rhodococcus wratislaviensis C31-06, which has been fully elucidated through a proteome analysis. The crystal structure analysis revealed that AibH1H2 forms a heterotetramer of two amidohydrolase superfamily proteins, of which AibHm2 is a non-heme diiron protein and functions as a catalytic subunit. The Aib monooxygenase was demonstrated to be a promising biocatalyst that is suitable for bioprocesses in which the inert C-H bond in methyl groups need to be activated.


Asunto(s)
Aminobutiratos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Rhodococcus/enzimología , Hidroxilación , Estructura Cuaternaria de Proteína
8.
Biosci Biotechnol Biochem ; 84(11): 2390-2400, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32729393

RESUMEN

Maltol derivatives are used in a variety of fields due to their metal-chelating abilities. In the previous study, it was found that cytochrome P450 monooxygenase, P450nov, which has the ability to effectively convert the 2-methyl group in a maltol derivative, transformed 3-benzyloxy-2-methyl-4-pyrone (BMAL) to 2-(hydroxymethyl)-3-(phenylmethoxy)-4H-pyran-4-one (BMAL-OH) and slightly to 3-benzyloxy-4-oxo-4 H-pyran-2-carboxaldehyde (BMAL-CHO). We isolated Pseudomonas nitroreducens SB32154 with the ability to convert BMAL-CHO to BMAL-COOH from soil. The enzyme responsible for aldehyde oxidation, a BMAL-CHO dehydrogenase, was purified from P. nitroreducens SB32154 and characterized. The purified BMAL-CHO dehydrogenase was found to be a xanthine oxidase family enzyme with unique structure of heterodimer composed of 75 and 15 kDa subunits containing a molybdenum cofactor and [Fe-S] clusters, respectively. The enzyme showed broad substrate specificity toward benzaldehyde derivatives. Furthermore, one-pot conversion of BMAL to BMAL-COOH via BMAL-CHO by the combination of the BMAL-CHO dehydrogenase with P450nov was achieved.


Asunto(s)
Aldehído Deshidrogenasa/química , Aldehído Deshidrogenasa/metabolismo , Molibdeno , Pseudomonas/química , Pironas/metabolismo , Biocatálisis , Oxidación-Reducción
9.
J Biosci Bioeng ; 125(1): 38-45, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28826816

RESUMEN

Microorganisms were screened for transribosylation activity between 2'-O-methyluridine (2'-OMe-UR) and nucleobases, for the purpose of developing a biotransformation process to synthesize 2'-O-methylribonucleosides (2'-OMe-NRs), which are raw materials for nucleic acid drugs. An actinomycete, Agromyces sp. MM-1 was found to produce 2'-O-methyladenosine (2'-OMe-AR) when whole cells were used in a reaction mixture containing 2'-OMe-UR and adenine. The enzyme responsible for the transribosylation was partially purified from Agromyces sp. MM-1 cells through a six-step separation procedure, and identified as a nucleoside hydrolase family enzyme termed AgNH. AgNH was a bi-functional enzyme catalyzing both hydrolysis towards 2'-OMe-NRs and transribosylation between 2'-OMe-UR and various nucleobases as well as adenine. In the hydrolysis reaction, AgNH preferred guanosine analogues as its substrates. In the transribosylation reaction, AgNH showed strong activity towards 6-chloroguanine, with 25-fold relative activity when adenine was used as the acceptor substrate. The transribosylation reaction product from 2'-OMe-UR and 6-chloroguanine was determined to 2'-O-methyl-6-chloroguanosine (2'-OMe-6ClGR). Under the optimal conditions, the maximum molar yield of 2'-OMe-6ClGR reached 2.3% in a 293-h reaction, corresponding to 440 mg/L.


Asunto(s)
Actinomycetales/enzimología , Adenosina/análogos & derivados , N-Glicosil Hidrolasas/metabolismo , Adenina/metabolismo , Adenosina/biosíntesis , Adenosina/metabolismo , Biocatálisis , Guanina/análogos & derivados , Guanina/biosíntesis , Guanina/química , Guanina/metabolismo , Hidrólisis , N-Glicosil Hidrolasas/aislamiento & purificación , Uridina/análogos & derivados , Uridina/metabolismo
10.
Bioorg Med Chem ; 26(7): 1327-1332, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28698052

RESUMEN

A panel of microorganisms was screened for selective reduction ability towards a racemic mixture of prochiral 2-amino-3-methyl-4-ketopentanoate (rac-AMKP). Several of the microorganisms tested produced greater than 0.5mM 4-hydroxyisoleucine (HIL) from rac-AMKP, and the stereoselectivity of HIL formation was found to depend on the taxonomic category to which the microorganism belonged. The enzymes responsible for the AMKP-reducing activity, ApAR and FsAR, were identified from two of these microorganisms, Aureobasidium pullulans NBRC 4466 and Fusarium solani TG-2, respectively. Three AMKP reducing enzymes, ApAR, FsAR, and the previously reported BtHILDH, were reacted with rac-AMKP, and each enzyme selectively produced a specific composition of HIL stereoisomers. The enzymes appeared to have different characteristics in recognition of the stereostructure of the substrate AMKP and in control of the 4-hydroxyl group configuration in the HIL product.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Ascomicetos/enzimología , Fusarium/enzimología , Isoleucina/análogos & derivados , Secuencia de Aminoácidos , Biocatálisis , Isoleucina/biosíntesis , Isoleucina/química , Alineación de Secuencia
11.
Sci Rep ; 7(1): 13703, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057974

RESUMEN

Fenugreek is a dietary supplement for anti-aging and human health. (2S,3R,4S)-4-hydroxyisoleucine (4-HIL), which is extracted from fenugreek seeds, is expected to be a promising orally active drug for diabetes and diabetic nephropathy because of its insulinotropic effect. Although several chemical synthesis methods of 4-HIL have been proposed, these methods require multistep reactions to control the stereochemistry of 4-HIL. In this study, we modified the key enzyme 4-HIL dehydrogenase (HILDH) to overcome the biggest limitation in commercial-scale production of 4-HIL. As a result, an effective one-step carbonyl reduction to produce (2S,3R,4S)-4-HIL was successfully accomplished with strict stereoselectivity (>99% de). Mass production of (2S,3R,4S)-4-HIL by our synthetic method could have a significant contribution to the prevention of diabetes, dyslipidemia, and Alzheimer's disease. (120 words/200 words).


Asunto(s)
Ácido Graso Sintasas/química , Isoleucina/análogos & derivados , NADH NADPH Oxidorreductasas/química , Bacillus thuringiensis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Isoleucina/biosíntesis , Isoleucina/química , Cinética , Modelos Moleculares , NAD/química , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas/métodos
12.
Appl Microbiol Biotechnol ; 101(17): 6651-6658, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28730410

RESUMEN

Maltol derivatives are utilized in a variety of fields due to their metal-chelating abilities, and modification of the 2-methyl side chain is known to effectively expand their functional diversity. In the present study, microbial enzymes were screened for hydroxylating activity towards the 2-methyl group in a maltol derivative, 3-benzyloxy-2-methyl-4-pyrone (BMAL). Novosphingobium sp. SB32149 was found to have the ability to convert BMAL into 3-benzyloxy-2-hydroxymethyl-4-pyrone (BMAL-OH). The enzymes responsible, a cytochrome P450 monooxygenase (P450nov), a ferredoxin (FDXnov), and a ferredoxin reductase (FDRnov), were identified in the SB32149 strain. In the reaction with recombinant Escherichia coli expressing P450nov, FDXnov, and FDRnov, BMAL-OH was successfully produced from BMAL. Moreover, using the directed evolution approach, four amino acid substitutions, L188P/F218L/L237M in P450nov and A10T in FDXnov, were found to enhance BMAL-OH production. Consequently, up to 5.2 g/L BMAL-OH was obtained from 8.0 g/L BMAL by bioconversion using a 250-mL jar fermenter, indicating that this strain may be useful for synthesis of maltol derivatives which could have potential applications in various fields.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Ingeniería Genética/métodos , Pironas/metabolismo , Sustitución de Aminoácidos , Clonación Molecular/métodos , Sistema Enzimático del Citocromo P-450/metabolismo , Evolución Molecular Dirigida/métodos , Escherichia coli/genética , Ferredoxinas/metabolismo , Hidroxilación
13.
J Biosci Bioeng ; 123(6): 659-664, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28202305

RESUMEN

2'-O-Methylribonucleosides (2'-OMe-NRs) are promising raw materials for the production of nucleic acid drugs. We previously reported that LbNH, a nucleoside hydrolase from Lactobacillus buchneri LBK78 (NITE P-01581), was the first enzyme found to act on 2'-OMe-NRs. In the present study, we determined that LbNH also has the transribosylation activity between 2'-OMe-NRs and nucleobases, in addition to the hydrolyzing activity towards 2'-OMe-NRs. When 2'-O-methyluridine (2'-OMe-UR) and adenine were reacted with LbNH, 2'-O-methyladenosine (2'-OMe-AR) was produced. LbNH preferred purine nucleobases as its acceptor substrates for the transribosylation with 2'-OMe-UR as a donor substrate. Kinetic analysis of LbNH revealed that adenine behaved as a mixed inhibitor of the hydrolysis of 2'-OMe-UR. Under the optimal reaction conditions, the maximum molar yield of enzymatic 2'-OMe-AR produced reached 0.97% towards 2'-OMe-UR, corresponding to 0.16 g/L.


Asunto(s)
Adenosina/análogos & derivados , Lactobacillus/enzimología , N-Glicosil Hidrolasas/metabolismo , Uridina/análogos & derivados , Adenosina/síntesis química , Biocatálisis , Hidrólisis , Cinética , Uridina/química , Uridina/metabolismo
14.
Biosci Biotechnol Biochem ; 80(11): 2132-2137, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27352072

RESUMEN

The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon-carbon double bond were cleaved at the carbon-carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.

15.
Biosci Biotechnol Biochem ; 80(8): 1568-76, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27180876

RESUMEN

2'-O-Methylribonucleosides (2'-OMe-NRs) are promising raw materials for nucleic acid drugs because of their high thermal stability and nuclease tolerance. In the course of microbial screening for metabolic activity toward 2'-OMe-NRs, Lactobacillus buchneri LBK78 was found to decompose 2'-O-methyluridine (2'-OMe-UR). The enzyme responsible was partially purified from L. buchneri LBK78 cells by a four-step purification procedure, and identified as a novel nucleoside hydrolase. This enzyme, LbNH, belongs to the nucleoside hydrolase superfamily, and formed a homotetrameric structure composed of subunits with a molecular mass around 34 kDa. LbNH hydrolyzed 2'-OMe-UR to 2'-O-methylribose and uracil, and the kinetic constants were Km of 0.040 mM, kcat of 0.49 s(-1), and kcat/Km of 12 mM(-1) s(-1). In a substrate specificity analysis, LbNH preferred ribonucleosides and 2'-OMe-NRs as its hydrolytic substrates, but reacted weakly with 2'-deoxyribonucleosides. In a phylogenetic analysis, LbNH showed a close relationship with purine-specific nucleoside hydrolases from trypanosomes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lactobacillus/enzimología , N-Glicosil Hidrolasas/metabolismo , Subunidades de Proteína/metabolismo , Uridina/análogos & derivados , Proteínas Bacterianas/genética , Biocatálisis , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Lactobacillus/clasificación , Lactobacillus/genética , N-Glicosil Hidrolasas/genética , Filogenia , Multimerización de Proteína , Subunidades de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosa/análogos & derivados , Ribosa/química , Ribosa/metabolismo , Especificidad por Sustrato , Uracilo/química , Uracilo/metabolismo , Uridina/química , Uridina/metabolismo
16.
Appl Environ Microbiol ; 82(7): 2070-2077, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26801577

RESUMEN

Hydroxypipecolic acids are bioactive compounds widely distributed in nature and are valuable building blocks for the organic synthesis of pharmaceuticals. We have found a novel hydroxylating enzyme with activity toward L-pipecolic acid (L-Pip) in a filamentous fungus, Fusarium oxysporum c8D. The enzyme L-Pip trans-4-hydroxylase (Pip4H) of F. oxysporum (FoPip4H) belongs to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily, catalyzes the regio- and stereoselective hydroxylation of L-Pip, and produces optically pure trans-4-hydroxy-L-pipecolic acid (trans-4-L-HyPip). Amino acid sequence analysis revealed several fungal enzymes homologous with FoPip4H, and five of these also had L-Pip trans-4-hydroxylation activity. In particular, the homologous Pip4H enzyme derived from Aspergillus nidulans FGSC A4 (AnPip4H) had a broader substrate specificity spectrum than other homologues and reacted with the L and D forms of various cyclic and aliphatic amino acids. Using FoPip4H as a biocatalyst, a system for the preparative-scale production of chiral trans-4-L-HyPip was successfully developed. Thus, we report a fungal family of L-Pip hydroxylases and the enzymatic preparation of trans-4-L-HyPip, a bioactive compound and a constituent of secondary metabolites with useful physiological activities.


Asunto(s)
Dioxigenasas/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Ácidos Pipecólicos/metabolismo , Biocatálisis , Dioxigenasas/química , Dioxigenasas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/metabolismo , Hidroxilación , Familia de Multigenes , Ácidos Pipecólicos/química , Especificidad por Sustrato
17.
Appl Microbiol Biotechnol ; 99(23): 9961-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26205522

RESUMEN

The recent use of optically active 3-substituted gamma-aminobutyric acid (GABA) analogs in human therapeutics has identified a need for an efficient, stereoselective method of their synthesis. Here, bacterial strains were screened for enzymes capable of stereospecific hydrolysis of 3-substituted glutarimides to generate (R)-3-substituted glutaric acid monoamides. The bacteria Alcaligenes faecalis NBRC13111 and Burkholderia phytofirmans DSM17436 were discovered to hydrolyze 3-(4-chlorophenyl) glutarimide (CGI) to (R)-3-(4-chlorophenyl) glutaric acid monoamide (CGM) with 98.1% enantiomeric excess (e.e.) and 97.5% e.e., respectively. B. phytofirmans DSM17436 could also hydrolyze 3-isobutyl glutarimide (IBI) to produce (R)-3-isobutyl glutaric acid monoamide (IBM) with 94.9% e.e. BpIH, an imidase, was purified from B. phytofirmans DSM17436 and found to generate (R)-CGM from CGI with specific activity of 0.95 U/mg. The amino acid sequence of BpIH had a 75% sequence identity to that of allantoinase from A. faecalis NBRC13111 (AfIH). The purified recombinant BpIH and AfIH catalyzed (R)-selective hydrolysis of CGI and IBI. In addition, a preliminary investigation of the enzymatic properties of BpIH and AfIH revealed that both enzymes were stable in the range of pH 6-10, with an optimal pH of 9.0, stable at temperatures below 40 °C, and were not metalloproteins. These results indicate that the use of this class of hydrolase to generate optically active 3-substituted glutaric acid monoamide could simplify the production of specific chiral GABA analogs for drug therapeutics.


Asunto(s)
Alcaligenes faecalis/enzimología , Amidohidrolasas/metabolismo , Burkholderiaceae/enzimología , Glutaratos/metabolismo , Imidas/metabolismo , Proteínas Recombinantes/metabolismo , Amidohidrolasas/química , Amidohidrolasas/genética , Amidohidrolasas/aislamiento & purificación , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Homología de Secuencia de Aminoácido , Temperatura , Ácido gamma-Aminobutírico/metabolismo
18.
J Biosci Bioeng ; 119(2): 172-5, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25060731

RESUMEN

Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.


Asunto(s)
Ácido Acético/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Trehalosa/metabolismo , Etanol/metabolismo , Eliminación de Gen , Propionatos/farmacología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Trehalasa/deficiencia , Trehalasa/genética
19.
J Mol Evol ; 79(5-6): 204-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25425102

RESUMEN

All life generates deoxyribonucleotides, the building blocks of DNA, via ribonucleotide reductases (RNRs). The complexity of this reaction suggests it did not evolve until well after the advent of templated protein synthesis, which in turn suggests DNA evolved later than both RNA and templated protein synthesis. However, deoxyribonucleotides may have first been synthesised via an alternative, chemically simpler route--the reversal of the deoxyriboaldolase (DERA) step in deoxyribonucleotide salvage. In light of recent work demonstrating that this reaction can drive synthesis of deoxyribonucleosides, we consider what pressures early adoption of this pathway would have placed on cell metabolism. This in turn provides a rationale for the replacement of DERA-dependent DNA production by RNR-dependent production.


Asunto(s)
Aldehído-Liasas/química , Evolución Biológica , ADN/química , Origen de la Vida , Ribonucleótido Reductasas/química , Aldehído-Liasas/metabolismo , ADN/metabolismo , Replicación del ADN , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Eucariontes/química , Eucariontes/metabolismo , Células Procariotas/química , Células Procariotas/metabolismo , Ribonucleótido Reductasas/metabolismo , Factores de Tiempo
20.
Biosci Biotechnol Biochem ; 78(10): 1772-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25273144

RESUMEN

Rhodococcus rubropertinctus N82 possesses unique regiospecific hydroxylation activity in biotransformation of compounds. In this study, the ability of whole cells of the strain R. rubropertinctus N82 in biotransformation was studied. The hydroxylation activity resulted in transforming 6,7-dihydro-4H-thieno[3,2-c]-pyridine-5-carboxylic acid tert-butyl ester (LS1) into 2-hydroxy-6,7-dihydro-4H-thieno[3,2-c]-pyridine-5-carboxylic acid tert-butyl ester (LP1), a pharmaceutical intermediate. By optimizing conditions for the hydroxylating biotransformation using whole cells of R. rubropertinctus N82 as biocatalyst, 3.3 mM LP1 was successfully produced from 4 mM LS1 with a molar yield of 83%. Thus, effective method was newly developed to produce LP1, which is a synthetic intermediate of a platelet inhibitor active pharmaceutical ingredient drug, prasugrel.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Rhodococcus/citología , Rhodococcus/metabolismo , Biotransformación , Técnicas de Cultivo , Hidroxilación , Rhodococcus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...