Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Soc Sci Med ; 331: 116088, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37473540

RESUMEN

An estimated 250 million people worldwide suffer from knee osteoarthritis (KOA), with older adults having greater risk. Like other age-related diseases, residents of high-deprivation neighborhoods experience worse KOA pain outcomes compared to their more affluent neighbors. The purpose of this study was to examine the relationship between neighborhood deprivation and pain severity in KOA and the influence of epigenetic age acceleration (EpAA) on that relationship. The sample of 128 participants was mostly female (60.9%), approximately half non-Hispanic Black (49.2%), and had a mean age of 58 years. Spearman bivariate correlations revealed that pain severity positively correlated with EpAA (ρ = 0.47, p ≤ 0.001) and neighborhood deprivation (ρ = 0.25, p = 0.004). We found a positive significant relationship between neighborhood deprivation and EpAA (ρ = 0.47, p ≤ 0.001). Results indicate a mediating relationship between neighborhood deprivation (predictor), EpAA (mediator), and pain severity (outcome variable). There was a significant indirect effect of neighborhood deprivation on pain severity through EpAA, as the mediator accounted for a moderate portion of the total effect, PM = 0.44. Epigenetic age acceleration may act as a mechanism through which neighborhood deprivation leads to worse KOA pain outcomes and may play a role in the well-documented relationship between the neighborhood of residence and age-related diseases.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Femenino , Anciano , Persona de Mediana Edad , Masculino , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/epidemiología , Osteoartritis de la Rodilla/genética , Dimensión del Dolor , Articulación de la Rodilla , Dolor , Epigénesis Genética , Características de la Residencia
2.
J Am Heart Assoc ; 12(4): e027693, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752232

RESUMEN

As the worldwide prevalence of overweight and obesity continues to rise, so too does the urgency to fully understand mediating mechanisms, to discover new targets for safe and effective therapeutic intervention, and to identify biomarkers to track obesity and the success of weight loss interventions. In 2016, the American Heart Association sought applications for a Strategically Focused Research Network (SFRN) on Obesity. In 2017, 4 centers were named, including Johns Hopkins University School of Medicine, New York University Grossman School of Medicine, University of Alabama at Birmingham, and Vanderbilt University Medical Center. These 4 centers were convened to study mechanisms and therapeutic targets in obesity, to train a talented cadre of American Heart Association SFRN-designated fellows, and to initiate and sustain effective and enduring collaborations within the individual centers and throughout the SFRN networks. This review summarizes the central themes, major findings, successful training of highly motivated and productive fellows, and the innovative collaborations and studies forged through this SFRN on Obesity. Leveraging expertise in in vitro and cellular model assays, animal models, and humans, the work of these 4 centers has made a significant impact in the field of obesity, opening doors to important discoveries, and the identification of a future generation of obesity-focused investigators and next-step clinical trials. The creation of the SFRN on Obesity for these 4 centers is but the beginning of innovative science and, importantly, the birth of new collaborations and research partnerships to propel the field forward.


Asunto(s)
American Heart Association , Sobrepeso , Animales , Humanos , Sobrepeso/epidemiología , Sobrepeso/terapia , Obesidad/epidemiología , Obesidad/terapia , Causalidad , New York
3.
Metabolites ; 12(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557264

RESUMEN

A known association exists between exposure to gestational diabetes mellitus (GDM) and epigenetic age acceleration (EAA) in GDM-exposed offspring compared to those without GDM exposure. This association has not been assessed previously in mothers with pregnancies complicated by GDM. A total of 137 mother-child dyads with an index pregnancy 4−10 years before study enrollment were included. Clinical data and whole blood samples were collected and quantified to obtain DNA methylation (DNAm) estimates using the Illumina MethylEPIC 850K array in mothers and offspring. DNAm age and age acceleration were evaluated using the Horvath and Hannum clocks. Multivariable linear regression models were performed to determine the association between EAA and leptin, high-density lipoprotein cholesterol (HDL-C), fasting glucose, fasting insulin, and HOMA-IR. Mothers with a GDM and non-GDM pregnancy had strong correlations between chronological age and DNAm age (r > 0.70). Offspring of GDM mothers had moderate to strong correlations, whereas offspring of non-GDM mothers had moderate correlations between chronological age and DNAm age. Association analyses revealed a significant association between EAA and fasting insulin in offspring (FDR < 0.05), while HDL-C was the only metabolic marker significantly associated with EAA in mothers (FDR < 0.05). Mothers in the GDM group had a higher predicted epigenetic age and age acceleration than mothers in the non-GDM group. The association between EAA with elevated fasting insulin in offspring and elevated HDL-C in mothers suggests possible biomarkers that can better elucidate the effects of exposure to a GDM pregnancy and future cardiometabolic outcomes.

4.
Obes Sci Pract ; 8(5): 627-640, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36238222

RESUMEN

Objective: Obesity in pregnancy and gestational diabetes (GDM) increase cardiometabolic disease risk but are difficult to disentangle. This study aimed to test the hypothesis that 4-10 years after a pregnancy complicated by overweight/obesity and GDM (OB-GDM), women and children would have greater adiposity and poorer cardiometabolic health than those with overweight/obesity (OB) or normal weight (NW) and no GDM during the index pregnancy. Methods: In this cross-sectional study, mother-child dyads were stratified into three groups based on maternal health status during pregnancy (OB-GDM = 67; OB = 76; NW = 76). Weight, height, waist and hip circumferences, and blood pressure were measured, along with fasting glucose, insulin, HbA1c, lipids, adipokines, and cytokines. Results: Women in the OB and OB-GDM groups had greater current adiposity and poorer cardiometabolic health outcomes than those in the NW group (p < 0.05). After adjusting for current adiposity, women in the OB-GDM group had higher HbA1c, glucose, HOMA-IR and triglycerides than NW and OB groups (p < 0.05). Among children, adiposity was greater in the OB-GDM versus NW group (p < 0.05), but other indices of cardiometabolic health did not differ. Conclusions: Poor cardiometabolic health in women with prior GDM is independent of current adiposity. Although greater adiposity among children exposed to GDM is evident at 4-10 years, differences in cardiometabolic health may not emerge until later.

5.
Front Med (Lausanne) ; 9: 971297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250097

RESUMEN

Background: Some but not all African-Americans (AA) who carry APOL1 nephropathy risk variants (APOL1) develop kidney failure (end-stage kidney disease, ESKD). To identify genetic modifiers, we assessed gene-gene interactions in a large prospective cohort of the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Methods: Genotypes from 8,074 AA participants were obtained from Illumina Infinium Multi-Ethnic AMR/AFR Extended BeadChip. We compared 388 incident ESKD cases with 7,686 non-ESKD controls, using a two-locus interaction approach. Logistic regression was used to examine the effect of APOL1 risk status (using recessive and additive models), single nucleotide polymorphism (SNP), and APOL1*SNP interaction on incident ESKD, adjusting for age, sex, and ancestry. APOL1 *SNP interactions that met the threshold of 1.0 × 10-5 were replicated in the Genetics of Hypertension Associated Treatment (GenHAT) study (626 ESKD cases and 6,165 controls). In a sensitivity analysis, models were additionally adjusted for diabetes status. We conducted additional replication in the BioVU study. Results: Two APOL1 risk alleles prevalence (recessive model) was similar in the REGARDS and GenHAT studies. Only one APOL1-SNP interaction, for rs7067944 on chromosome 10, ~10 KB from the PCAT5 gene met the genome-wide statistical threshold (P interaction = 3.4 × 10-8), but this interaction was not replicated in the GenHAT study. Among other relevant top findings (with P interaction < 1.0 × 10-5), a variant (rs2181251) near SMOC2 on chromosome six interacted with APOL1 risk status (additive) on ESKD outcomes (REGARDS study, P interaction =5.3 × 10-6) but the association was not replicated (GenHAT study, P interaction = 0.07, BioVU study, P interaction = 0.53). The association with the locus near SMOC2 persisted further in stratified analyses. Among those who inherited ≥1 alternate allele of rs2181251, APOL1 was associated with an increased risk of incident ESKD (OR [95%CI] = 2.27[1.53, 3.37]) but APOL1 was not associated with ESKD in the absence of the alternate allele (OR [95%CI] = 1.34[0.96, 1.85]) in the REGARDS study. The associations were consistent after adjusting for diabetes. Conclusion: In a large genome-wide association study of AAs, a locus SMOC2 exhibited a significant interaction with the APOL1 locus. SMOC2 contributes to the progression of fibrosis after kidney injury and the interaction with APOL1 variants may contribute to an explanation for why only some APOLI high-risk individuals develop ESKD.

6.
Genes (Basel) ; 13(7)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35886043

RESUMEN

Hypertension is a leading risk factor for cardiovascular disease mortality. African Americans (AAs) have the highest prevalence of hypertension in the United States, and to alleviate the burden of hypertension in this population, better control of blood pressure (BP) is needed. Previous studies have shown considerable interpersonal differences in BP response to antihypertensive treatment, suggesting a genetic component. Utilizing data from 4297 AA participants randomized to chlorthalidone from the Genetics of Hypertension Associated Treatments (GenHAT) study, we aimed to identify variants associated with the efficacy of chlorthalidone. An additional aim was to find variants that contributed to changes in fasting glucose (FG) in these individuals. We performed genome-wide association analyses on the change of systolic and diastolic BP (SBP and DBP) over six months and FG levels over 24 months of treatment. We sought replication in the International Consortia of Pharmacogenomics Studies. We identified eight variants statistically associated with BP response and nine variants associated with FG response. One suggestive LINC02211-CDH9 intergenic variant was marginally replicated with the same direction of effect. Given the impact of hypertension in AAs, this study implies that understanding the genetic background for BP control and glucose changes during chlorthalidone treatment may help prevent adverse cardiovascular events in this population.


Asunto(s)
Clortalidona , Hipertensión , Negro o Afroamericano/genética , Clortalidona/efectos adversos , Estudio de Asociación del Genoma Completo , Glucosa , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Estados Unidos
7.
Cell Genom ; 2(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35530816

RESUMEN

Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.

8.
Am J Nephrol ; 53(2-3): 182-190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100591

RESUMEN

INTRODUCTION: The association of apolipoprotein L1 (APOL1) nephropathy risk variants (APOL1), unique to African-ancestry (African-American [AA]) populations, with systemic inflammation, a contributor to chronic kidney disease (CKD) and end-stage kidney disease (ESKD) is ill-defined. This study aimed to describe the role of inflammatory markers in the relationship between APOL1 and incident kidney outcomes using a prospective cohort study. METHODS: APOL1 high-risk status under a recessive genetic model was studied in 10,605 AA adults aged ≥45 years from the Reasons for Geographic and Racial Differences in Stroke study. The primary variables of interest were inflammatory markers: C-reactive protein (mg/dL), white blood cell count (cells/mm3), and serum albumin (sALB) (mg/dL). High inflammation status was defined if at least one of these inflammatory markers exceeded clinical threshold. The association between APOL1 and biomarkers were assessed using regression models adjusting for age, sex, ancestry, hypertension, lipid medications, albumin-to-creatinine ratio, and estimated glomerular filtration rate (eGFR). Models were stratified by diabetes status. We identified incident ESKD using USRDS linkage, and we defined incident CKD as an eGFR <60 mL/min/1.73 m2 and ≥25% decline in the eGFR and normal baseline eGFR and tested for mediation of APOL1 and outcomes by biomarkers using the causal inference approach. RESULTS: Among 7,151 participants with data available on all inflammation markers, 4,479 participants had ≥1 marker meeting the clinical threshold. APOL1 high-risk status was associated with lower adjusted odds of reduced sALB {odds ratio (OR) (95% confidence interval [CI]): 0.59 [0.36, 0.96])}, and this association was significant in people with diabetes (OR [95% CI]: 0.40 [0.18, 0.89]) but not in those without diabetes. There was no association of APOL1 high-risk status with other markers or high inflammation status. APOL1 was independently associated with ESKD (OR [95% CI] = 1.78 [1.28, 2.48]) and CKD (OR [95% CI] = 1.38 [1.00, 1.91]). On mediation analysis, the direct effect between APOL1 and ESKD strengthened after accounting for sALB, but the estimated mediated effect was not statistically significant (OR [95% CI]: 0.98 [0.92, 1.05], p = 0.58). CONCLUSION: APOL1 high-risk variants were associated with sALB. However, sALB did not statistically mediate the association between APOL1 and incident ESKD.


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Adulto , Apolipoproteína L1/genética , Estudios de Cohortes , Tasa de Filtración Glomerular , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Factores de Riesgo , Albúmina Sérica
9.
PLoS One ; 16(11): e0259836, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780523

RESUMEN

There has been great interest in genetic risk prediction using risk scores in recent years, however, the utility of scores developed in European populations and later applied to non-European populations has not been successful. The goal of this study was to create a methylation risk score (MRS) for metabolic syndrome (MetS), demonstrating the utility of MRS across race groups using cross-sectional data from the Hypertension Genetic Epidemiology Network (HyperGEN, N = 614 African Americans (AA)) and the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN, N = 995 European Americans (EA)). To demonstrate this, we first selected cytosine-guanine dinucleotides (CpG) sites measured on Illumina Methyl450 arrays previously reported to be significantly associated with MetS and/or component conditions in more than one race/ethnic group (CPT1A cg00574958, PHOSPHO1 cg02650017, ABCG1 cg06500161, SREBF1 cg11024682, SOCS3 cg18181703, TXNIP cg19693031). Second, we calculated the parameter estimates for the 6 CpGs in the HyperGEN data (AA) and used the beta estimates as weights to construct a MRS in HyperGEN (AA), which was validated in GOLDN (EA). We performed association analyses using logistic mixed models to test the association between the MRS and MetS, adjusting for covariates. Results showed the MRS was significantly associated with MetS in both populations. In summary, a MRS for MetS was a strong predictor for the condition across two race groups, suggesting MRS may be useful to examine metabolic disease risk or related complications across race/ethnic groups.


Asunto(s)
Negro o Afroamericano/genética , Metilación de ADN , Estudios de Asociación Genética/métodos , Síndrome Metabólico/genética , Población Blanca/genética , Adulto , Anciano , Algoritmos , Islas de CpG , Estudios Transversales , Epigénesis Genética , Femenino , Marcadores Genéticos , Humanos , Modelos Logísticos , Masculino , Síndrome Metabólico/etnología , Persona de Mediana Edad
10.
Am J Physiol Heart Circ Physiol ; 320(5): H2066-H2079, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33769919

RESUMEN

Heart failure (HF) is a multifactorial syndrome that remains a leading cause of worldwide morbidity. Despite its high prevalence, only half of patients with HF respond to guideline-directed medical management, prompting therapeutic efforts to confront the molecular underpinnings of its heterogeneity. In the current study, we examined epigenetics as a yet unexplored source of heterogeneity among patients with end-stage HF. Specifically, a multicohort-based study was designed to quantify cardiac genome-wide cytosine-p-guanine (CpG) methylation of cardiac biopsies from male patients undergoing left ventricular assist device (LVAD) implantation. In both pilot (n = 11) and testing (n = 31) cohorts, unsupervised multidimensional scaling of genome-wide myocardial DNA methylation exhibited a bimodal distribution of CpG methylation found largely to occur in the promoter regions of metabolic genes. Among the available patient attributes, only categorical self-identified patient race could delineate this methylation signature, with African American (AA) and Caucasian American (CA) samples clustering separately. Because race is a social construct, and thus a poor proxy of human physiology, extensive review of medical records was conducted, but ultimately failed to identify covariates of race at the time of LVAD surgery. By contrast, retrospective analysis exposed a higher all-cause mortality among AA (56.3%) relative to CA (16.7%) patients at 2 yr following LVAD placement (P = 0.03). Geocoding-based approximation of patient demographics uncovered disparities in income levels among AA relative to CA patients. Although additional studies are needed, the current analysis implicates cardiac DNA methylation as a previously unrecognized indicator of socioeconomic disparity in human heart failure outcomes.NEW & NOTEWORTHY A bimodal signature of cardiac DNA methylation in heart failure corresponds with racial differences in all-cause mortality following mechanical circulatory support. Racial differences in promoter methylation disproportionately affect metabolic signaling pathways. Socioeconomic factors are associated with racial differences in the cardiac methylome among men with end-stage heart failure.


Asunto(s)
Metilación de ADN , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Adulto , Negro o Afroamericano , Asiático , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Estudios Retrospectivos , Factores Socioeconómicos , Población Blanca
11.
Front Genet ; 12: 781451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992631

RESUMEN

Background: African Americans (AAs) suffer a higher stroke burden due to hypertension. Identifying genetic contributors to stroke among AAs with hypertension is critical to understanding the genetic basis of the disease, as well as detecting at-risk individuals. Methods: In a population comprising over 10,700 AAs treated for hypertension from the Genetics of Hypertension Associated Treatments (GenHAT) and Reasons for Geographic and Racial Differences in Stroke (REGARDS) studies, we performed an inverse variance-weighted meta-analysis of incident stroke. Additionally, we tested the predictive accuracy of a polygenic risk score (PRS) derived from a European ancestral population in both GenHAT and REGARDS AAs aiming to evaluate cross-ethnic performance. Results: We identified 10 statistically significant (p < 5.00E-08) and 90 additional suggestive (p < 1.00E-06) variants associated with incident stroke in the meta-analysis. Six of the top 10 variants were located in an intergenic region on chromosome 18 (LINC01443-LOC644669). Additional variants of interest were located in or near the COL12A1, SNTG1, PCDH7, TMTC1, and NTM genes. Replication was conducted in the Warfarin Pharmacogenomics Cohort (WPC), and while none of the variants were directly validated, seven intronic variants of NTM proximal to our target variants, had a p-value <5.00E-04 in the WPC. The inclusion of the PRS did not improve the prediction accuracy compared to a reference model adjusting for age, sex, and genetic ancestry in either study and had lower predictive accuracy compared to models accounting for established stroke risk factors. These results demonstrate the necessity for PRS derivation in AAs, particularly for diseases that affect AAs disproportionately. Conclusion: This study highlights biologically plausible genetic determinants for incident stroke in hypertensive AAs. Ultimately, a better understanding of genetic risk factors for stroke in AAs may give new insight into stroke burden and potential clinical tools for those among the highest at risk.

12.
Am J Hum Genet ; 105(4): 706-718, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564435

RESUMEN

Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (-0.88% in hemizygous males, -0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; -0.98% in hemizygous males, -0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.


Asunto(s)
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Variación Genética , Hemoglobina Glucada/genética , Grupos de Población/genética , Medicina de Precisión , Estudios de Cohortes , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple
13.
Nat Commun ; 10(1): 2581, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197173

RESUMEN

Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D.


Asunto(s)
Metilación de ADN/fisiología , Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Insulina/metabolismo , Obesidad/genética , Adulto , Anciano , Anciano de 80 o más Años , Simulación por Computador , Islas de CpG/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigénesis Genética/fisiología , Epigenómica/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo/métodos , Homeostasis/genética , Humanos , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Obesidad/metabolismo , Polimorfismo de Nucleótido Simple/fisiología , Adulto Joven
14.
Sci Rep ; 9(1): 843, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696834

RESUMEN

Five sequence variants in SLC16A11 (rs117767867, rs13342692, rs13342232, rs75418188, and rs75493593), which occur in two non-reference haplotypes, were recently shown to be associated with diabetes in Mexicans from the SIGMA consortium. We aimed to determine whether these previous findings would replicate in the HCHS/SOL Mexican origin group and whether genotypic effects were similar in other HCHS/SOL groups. We analyzed these five variants in 2492 diabetes cases and 5236 controls from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), which includes U.S. participants from six diverse background groups (Mainland groups: Mexican, Central American, and South American; and Caribbean groups: Puerto Rican, Cuban, and Dominican). We estimated the SNP-diabetes association in the six groups and in the combined sample. We found that the risk alleles occur in two non-reference haplotypes in HCHS/SOL, as in the SIGMA Mexicans. The haplotype frequencies were very similar between SIGMA Mexicans and the HCHS/SOL Mainland groups, but different in the Caribbean groups. The SLC16A11 sequence variants were significantly associated with risk for diabetes in the Mexican origin group (P = 0.025), replicating the SIGMA findings. However, these variants were not significantly associated with diabetes in a combined analysis of all groups, although the power to detect such effects was 85% (assuming homogeneity of effects among the groups). Additional analyses performed separately in each of the five non-Mexican origin groups were not significant. We also analyzed (1) exclusion of young controls and, (2) SNP by BMI interactions, but neither was significant in the HCHS/SOL data. The previously reported effects of SLC16A11 variants on diabetes in Mexican samples was replicated in a large Mexican-American sample, but these effects were not significant in five non-Mexican Hispanic/Latino groups sampled from U.S. populations. Lack of replication in the HCHS/SOL non-Mexicans, and in the entire HCHS/SOL sample combined may represent underlying genetic heterogeneity. These results indicate a need for future genetic research to consider heterogeneity of the Hispanic/Latino population in the assessment of disease risk, but add to the evidence suggesting SLC16A11 as a potential therapeutic target for type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Hispánicos o Latinos/genética , Transportadores de Ácidos Monocarboxílicos/genética , Estudios de Asociación Genética , Haplotipos/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Estados Unidos
15.
Am J Clin Nutr ; 108(1): 188-200, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29901700

RESUMEN

Background: The putative functional variant -265T>C (rs5082) within the APOA2 promoter has shown consistent interactions with saturated fatty acid (SFA) intake to influence the risk of obesity. Objective: The aim of this study was to implement an integrative approach to characterize the molecular basis of this interaction. Design: We conducted an epigenome-wide scan on 80 participants carrying either the rs5082 CC or TT genotypes and consuming either a low-SFA (<22 g/d) or high-SFA diet (≥22 g/d), matched for age, sex, BMI, and diabetes status in the Boston Puerto Rican Health Study (BPRHS). We then validated the findings in selected participants in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study (n = 379) and the Framingham Heart Study (FHS) (n = 243). Transcription and metabolomics analyses were conducted to determine the relation between epigenetic status, APOA2 mRNA expression, and blood metabolites. Results: In the BPRHS, we identified methylation site cg04436964 as exhibiting significant differences between CC and TT participants consuming a high-SFA diet, but not among those consuming low-SFA. Similar results were observed in the GOLDN Study and the FHS. Additionally, in the FHS, cg04436964 methylation was negatively correlated with APOA2 expression in the blood of participants consuming a high-SFA diet. Furthermore, when consuming a high-SFA diet, CC carriers had lower APOA2 expression than those with the TT genotype. Lastly, metabolomic analysis identified 4 pathways as overrepresented by metabolite differences between CC and TT genotypes with high-SFA intake, including tryptophan and branched-chain amino acid (BCAA) pathways. Interestingly, these pathways were linked to rs5082-specific cg04436964 methylation differences in high-SFA consumers. Conclusions: The epigenetic status of the APOA2 regulatory region is associated with SFA intake and APOA2 -265T>C genotype, promoting an APOA2 expression difference between APOA2 genotypes on a high-SFA diet, and modulating BCAA and tryptophan metabolic pathways. These findings identify potential mechanisms by which this highly reproducible gene-diet interaction influences obesity risk, and contribute new insights to ongoing investigations of the relation between SFA and human health. This study was registered at clinicaltrials.gov as NCT03452787.


Asunto(s)
Apolipoproteína A-II/metabolismo , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacocinética , Epigenómica , Metabolómica , Obesidad/genética , Anciano , Apolipoproteína A-II/genética , Islas de CpG , Metilación de ADN , Interacciones Farmacológicas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Variación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Obesidad/metabolismo
16.
J Nutr Intermed Metab ; 8: 1-7, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28439531

RESUMEN

BACKGROUND: Trimethylamine-N-oxide (TMAO), an atherogenic metabolite species, has emerged as a possible new risk factor for cardiovascular disease. Animal studies have shown that circulating TMAO levels are regulated by genetic and environmental factors. However, large-scale human studies have failed to replicate the observed genetic associations, and epigenetic factors such as DNA methylation have never been examined in relation to TMAO levels. METHODS AND RESULTS: We used data from the family-based Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) to investigate the heritable determinants of plasma TMAO in humans. TMAO was not associated with other plasma markers of cardiovascular disease, e.g. lipids or inflammatory cytokines. We first estimated TMAO heritability at 27%, indicating a moderate genetic influence. We used 1000 Genomes imputed data (n=626) to estimate genome-wide associations with TMAO levels, adjusting for age, sex, family relationships, and study site. The genome-wide study yielded one significant hit at the genome-wide level, located in an intergenic region on chromosome 4. We subsequently quantified epigenome-wide DNA methylation using the Illumina Infinium array on CD4+ T-cells. We tested for association of methylation loci with circulating TMAO (n=847), adjusting for age, sex, family relationships, and study site as the genome-wide study plus principal components capturing CD4+ T-cell purity. Upon adjusting for multiple testing, none of the epigenetic findings were statistically significant. CONCLUSIONS: Our findings contribute to the growing body of evidence suggesting that neither genetic nor epigenetic factors play a critical role in establishing circulating TMAO levels in humans.

17.
J Lipid Res ; 57(12): 2200-2207, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27777315

RESUMEN

Postprandial lipemia (PPL), the increased plasma TG concentration after consuming a high-fat meal, is an independent risk factor for CVD. Individual responses to a meal high in fat vary greatly, depending on genetic and lifestyle factors. However, only a few loci have been associated with TG-PPL response. Heritable epigenomic changes may be significant contributors to the unexplained inter-individual PPL variability. We conducted an epigenome-wide association study on 979 subjects with DNA methylation measured from CD4+ T cells, who were challenged with a high-fat meal as a part of the Genetics of Lipid Lowering Drugs and Diet Network study. Eight methylation sites encompassing five genes, LPP, CPT1A, APOA5, SREBF1, and ABCG1, were significantly associated with PPL response at an epigenome-wide level (P < 1.1 × 10-7), but no methylation site reached epigenome-wide significance after adjusting for baseline TG levels. Higher methylation at LPP, APOA5, SREBF1, and ABCG1, and lower methylation at CPT1A methylation were correlated with an increased TG-PPL response. These PPL-associated methylation sites, also correlated with fasting TG, account for a substantially greater amount of phenotypic variance (14.9%) in PPL and fasting TG (16.3%) when compared with the genetic contribution of loci identified by our previous genome-wide association study (4.5%). In summary, the epigenome is a large contributor to the variation in PPL, and this has the potential to be used to modulate PPL and reduce CVD.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Epigénesis Genética , Triglicéridos/sangre , Adulto , Islas de CpG , Metilación de ADN , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/genética , Masculino , Persona de Mediana Edad , Fenotipo , Periodo Posprandial
18.
Genes Nutr ; 11: 23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27579147

RESUMEN

BACKGROUND: Vitamin D deficiency is a well-documented public health issue with both genetic and environmental determinants. Populations living at far northern latitudes are vulnerable to vitamin D deficiency and its health sequelae, although consumption of traditional native dietary pattern rich in fish and marine mammals may buffer the effects of reduced sunlight exposure. To date, few studies have investigated the genetics of vitamin D metabolism in circumpolar populations or considered genediet interactions with fish and n-3 fatty acid intake. METHODS: We searched for genomic regions exhibiting linkage and association with circulating levels of vitamin D and parathyroid hormone (PTH) in 982 Yup'ik individuals from the Center for Alaska Native Health Research Study. We also investigated potential interactions between genetic variants and a biomarker of traditional dietary intake, the δ15N value. RESULTS: We identified several novel regions linked with circulating vitamin D and PTH as well as replicated a previous linkage finding on 2p16.2 for vitamin D. Bioinformatic analysis revealed multiple candidate genes for both PTH and vitamin D, including CUBN, MGAT3, and NFKBIA. Targeted association analysis identified NEBL as a candidate gene for vitamin D and FNDC3B for PTH. We observed significant associations between a variant in MXD1 and vitamin D only when an interaction with the δ15N value was included. Finally, we integrated pathway level information to illustrate the biological validity of the proposed candidate genes. CONCLUSION: We provide evidence of linkage between several biologically plausible genomic regions and vitamin D metabolism in a circumpolar population. Additionally, these findings suggest that a traditional dietary pattern may modulate genetic effects on circulating vitamin D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...