Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Clin Transl Radiat Oncol ; 46: 100746, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38550309

RESUMEN

Introduction: Deep-inspirational breath hold (DIBH) is an option for heart protection in breast radiotherapy; we intended to study its individual benefit. Materials and Methods: 3DCRT treatment planning was performed in a cohort of 103 patients receiving radiotherapy of the whole breast (WBI)/chest wall (CWI) ± nodal regions (NI) both under DIBH and free breathing (FB) in the supine position, and in the WBI only cases prone (n = 45) position, too. A series of patient-related and heart dosimetry parameters were analyzed. Results: The DIBH technique provided dramatic reduction of all heart dosimetry parameters the individual benefit, however, varied. In the whole population the best predictor of benefit was the ratio of ipsilateral lung volume (ILV)FB and ILVDIBH. In the WBI cohort 9-11 patients and 5-8 patients received less dose to selected heart structures with the DIBH and prone positioning, respectively; based on meeting various dose constraints DIBH was the only solution in 6-13 cases, and prone positioning in 5-6 cases. In addition to other excellent predictors, a small ILVFB or ILVDIBH with outstanding predicting performance (AUC ≥ 0.90) suggested prone positioning. Detailed analysis consistently indicated the outstanding performance of ILVFB and ILVDIBH in predicting the benefit of one over the other technique in lowering the mean heart dose (MHD), left anterior descending coronary artery (LAD) mean dose and left ventricle(LV)-V5Gy. The preference of prone positioning was further confirmed by anatomical parameters measured on a single CT scan at the middle of the heart. Performing spirometry in a cohort of 12 patients, vital capacity showed the strongest correlation with ILVFB and ILVDIBH hence this test could be evaluated as a clinical tool for patient selection. Discussion: Individual lung volume measures estimated by spirometry and anatomical data examined prior to acquiring planning CT may support the preference of DIBH or prone radiotherapy for optimal heart protection.

2.
Anticancer Res ; 44(1): 205-212, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159978

RESUMEN

BACKGROUND/AIM: Targeted therapy and immunotherapy, with additional stereotactic radiation therapy (SRT) have revolutionized the management of metastatic malignant melanoma (mMM). We aimed to analyze the effectiveness and safety of SRT and determine its role in the complex management of mMM. PATIENTS AND METHODS: We treated 24 patients with solitary metastasis, 15 with oligometastatic disease and one with multiple metastases. The primary endpoint was to investigate the possible effect of stereotactic radiotherapy for metastatic lesions on patients' survival taking the systemic therapy into consideration. RESULTS: The median overall survival (OS) for the entire group was 30.07 months; 50% of them received immunotherapy, 32% received targeted therapy. Complete remission of the irradiated lesions was observed in six patients, partial tumor response was achieved in 13, while stable disease was detected in 10; tumor progression occurred in four cases. Compartmental recurrence (recurrence in the brain in a not previously irradiated region) developed in seven patients. OS was significantly longer in those with extracranial metastases treated with stereotactic body radiotherapy in comparison to brain SRT. We found a strong correlation between tumor response and mean OS (42.5 months after complete or partial remission versus 11.8 months in those with stable or progressive disease). No OS difference was observed according to the number of irradiated lesions or type of systemic therapy before SRT (no therapy: 43.6 months, with therapy: 25.7 months). Significant OS advantage was shown when immunotherapy was administered post-SRT (mean OS: with immunotherapy: 39.6 months, no immunotherapy: 18.5 months). CONCLUSION: In the case of oligometastatic MM, SRT can be used safely and with good efficiency in addition to targeted therapy/anti-programmed cell death protein 1 therapy. Improved survival warrants including SRT in the complex management of mMM, however, further studies are needed for SRT optimization.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Radiocirugia , Humanos , Radiocirugia/efectos adversos , Melanoma/radioterapia , Melanoma/patología , Neoplasias Encefálicas/secundario , Encéfalo/patología , Inmunoterapia/efectos adversos , Estudios Retrospectivos
3.
Front Oncol ; 13: 1166665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637070

RESUMEN

Introduction: Prostate-specific membrane antigen (PSMA) is a transmembrane protein that may be expressed on the surface of prostate cancer (PC) cells. It enables a more sensitive and specific diagnosis PC, compared to conventional anatomical imaging. Aim: The integration of PSMA-based imaging in the personalized radiotherapy of PC patients and the evaluation of its impact on target volume definition if stereotactic body radiotherapy (SBRT) is planned for locally recurrent or oligometastatic disease. Patients and methods: The data from 363 examinations were analyzed retrospectively. Inclusion criteria were histologically verified PC and clinical data suggesting local recurrence or distant metastasis. Whole-body 99mTc-PSMA-I&S single-photon emission computed tomography (SPECT)/CT or 18F-JK-PSMA-7 positron emission tomography/computer tomography (PET/CT) was carried out, and the evaluation of the scans and biological tumor volume contouring was performed at the Department of Nuclear Medicine. The target volume delineation on topometric CT (TCT) scan was performed at the Department of Oncotherapy. The comparison of the two volumes was performed by image fusion and registration. Results: From 363 PSMA isotope-based examinations, 84 lesions of 64 patients were treated with SBRT. In 50 patients, 70 lesions were examined for intermodality comparison. The target volume defined by the PSMA density was significantly smaller than the tumor size defined by the TCT scan: GTVCT (gross tumor volume on the TCT), 27.58 ± 46.07 cm3; BTVPSMA (biological target volume on the PSMA-based examination), 16.14 ± 29.87 cm3. During geometrical analyses, the Dice similarity coefficient (DSC) was 0.56 ± 0.20 (0.07-0.85). Prostate-specific antigen (PSA) control was performed to evaluate the response: mean pre-radiotherapy (pre-RT) PSA was 16.98 ng/ml ( ± SD: 33.81), and post-RT PSA at 3 months after SBRT was 11.19 ng/ml ( ± SD: 32.85). Three-month post-therapy PSMA-based imaging was performed in 14 cases, in which we observed a decrease or cessation of isotope uptake. Conventional imaging control was performed in 42 cases (65.6% of all cases): 22 (52.4%) complete remissions, 14 (33.3%) partial remissions, four (9.5%) stable diseases, and two (4.8%) progressive diseases were described. Conclusion: PSMA-based imaging is a promising diagnostic method for specifying the stage and detecting the low-volume progression. Our results suggest that PSMA-based hybrid imaging can influence treatment decisions and target volume delineation for SBRT.

4.
Radiother Oncol ; 184: 109692, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150446

RESUMEN

BACKGROUND AND PURPOSE: Magnetic Resonance (MR)-only radiotherapy enables the use of MR without the uncertainty of MR-Computed Tomography (CT) registration. This requires a synthetic CT (sCT) for dose calculations, which can be facilitated by a novel Zero Echo Time (ZTE) sequence where bones are visible and images are acquired in 65 seconds. This study evaluated the dose calculation accuracy for pelvic sites of a ZTE-based Deep Learning sCT algorithm developed by GE Healthcare. MATERIALS AND METHODS: ZTE and CT images were acquired in 56 pelvic radiotherapy patients in the radiotherapy position. A 2D U-net convolutional neural network was trained using pairs of deformably registered CT and ZTE images from 36 patients. In the remaining 20 patients the dosimetric accuracy of the sCT was assessed using cylindrical dummy Planning Target Volumes (PTVs) positioned at four different central axial locations, as well as the clinical treatment plans (for prostate (n = 10), rectum (n = 4) and anus (n = 6) cancers). The sCT was rigidly and deformably registered, the plan recalculated and the doses compared using mean differences and gamma analysis. RESULTS: Mean dose differences to the PTV D98% were ≤ 0.5% for all dummy PTVs and clinical plans (rigid registration). Mean gamma pass rates at 1%/1 mm were 98.0 ± 0.4% (rigid) and 100.0 ± 0.0% (deformable), 96.5 ± 0.8% and 99.8 ± 0.1%, and 95.4 ± 0.6% and 99.4 ± 0.4% for the clinical prostate, rectum and anus plans respectively. CONCLUSIONS: A ZTE-based sCT algorithm with high dose accuracy throughout the pelvis has been developed. This suggests the algorithm is sufficiently accurate for MR-only radiotherapy for all pelvic sites.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Algoritmos , Pelvis/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
5.
Adv Radiat Oncol ; 8(2): 101042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636382

RESUMEN

Purpose: The aim of this article is to establish a comprehensive contouring guideline for treatment planning using only magnetic resonance images through an up-to-date set of organs at risk (OARs), recommended organ boundaries, and relevant suggestions for the magnetic resonance imaging (MRI)-based delineation of OARs in the head and neck (H&N) region. Methods and Materials: After a detailed review of the literature, MRI data were collected from the H&N region of healthy volunteers. OARs were delineated in the axial, coronal, and sagittal planes on T2-weighted sequences. Every contour defined was revised by 4 radiation oncologists and subsequently by 2 independent senior experts (H&N radiation oncologist and radiologist). After revision, the final structures were presented to the consortium partners. Results: A definitive consensus was reached after multi-institutional review. On that basis, we provided a detailed anatomic and functional description and specific MRI characteristics of the OARs. Conclusions: In the era of precision radiation therapy, the need for well-built, straightforward contouring guidelines is on the rise. Precise, uniform, delineation-based, automated OAR segmentation on MRI may lead to increased accuracy in terms of organ boundaries and analysis of dose-dependent sequelae for an adequate definition of normal tissue complication probability.

6.
Sci Adv ; 8(50): eabn6025, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525492

RESUMEN

Fatigue is a common adverse effect of external beam radiation therapy in cancer patients. Mechanisms causing radiation fatigue remain unclear, although linkage to skin irradiation has been suggested. ß-Endorphin, an endogenous opioid, is synthesized in skin following genotoxic ultraviolet irradiation and acts systemically, producing addiction. Exogenous opiates with the same receptor activity as ß-endorphin can cause fatigue. Using rodent models of radiation therapy, exposing tails and sparing vital organs, we tested whether skin-derived ß-endorphin contributes to radiation-induced fatigue. Over a 6-week radiation regimen, plasma ß-endorphin increased in rats, paralleled by opiate phenotypes (elevated pain thresholds, Straub tail) and fatigue-like behavior, which was reversed in animals treated by the opiate antagonist naloxone. Mechanistically, all these phenotypes were blocked by opiate antagonist treatment and were undetected in either ß-endorphin knockout mice or mice lacking keratinocyte p53 expression. These findings implicate skin-derived ß-endorphin in systemic effects of radiation therapy. Opioid antagonism may warrant testing in humans as treatment or prevention of radiation-induced fatigue.

7.
Cells ; 11(19)2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36231067

RESUMEN

The quantitative analysis of datasets achieved by single molecule localization microscopy is vital for studying the structure of subcellular organizations. Cluster analysis has emerged as a multi-faceted tool in the structural analysis of localization datasets. However, the results it produces greatly depend on the set parameters, and the process can be computationally intensive. Here we present a new approach for structural analysis using lacunarity. Unlike cluster analysis, lacunarity can be calculated quickly while providing definitive information about the structure of the localizations. Using simulated data, we demonstrate how lacunarity results can be interpreted. We use these interpretations to compare our lacunarity analysis with our previous cluster analysis-based results in the field of DNA repair, showing the new algorithm's efficiency.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Análisis por Conglomerados , Reparación del ADN , Microscopía/métodos
8.
Front Neurosci ; 16: 886465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213748

RESUMEN

Glioblastoma is the most frequent type of primary brain tumors. Despite the advanced therapy, most of the patients die within 2 years after the diagnosis. The tumor has a typical appearance on MRI: a central hypointensity surrounded by an inhomogeneous, ring-shaped contrast enhancement along its border. Too small to be recognized by MRI, detached individual tumor cells migrate along white matter fiber tracts several centimeters away from the edge of the tumor. Usually these cells are the source of tumor recurrence. If the infiltrated brain areas could be identified, longer survival time could be achieved through supratotal resection and individually planned radiation therapy. Probabilistic tractography is an advanced imaging method that can potentially be used to identify infiltrated pathways, thus the real extent of the glioblastoma. Our study consisted of twenty high grade glioma patients. Probabilistic tractography was started from the tumor. The location of tumor recurrence on follow-up MRI was considered as the primary infiltrated white matter tracts. The results of probabilistic tractography were evaluated at thirteen different thresholds. The overlap with the tumor recurrence of each threshold level was then defined to calculate the sensitivity and specificity. In the group level, sensitivity (81%) and specificity (90%) were the most reliable at 5% threshold level. There were two outliers in the study group, both with high specificity and very low sensitivity. According to our results, probabilistic tractography can help to define the true extent of the glioblastoma at the time of diagnosis with high sensitivity and specificity. Individually planned surgery and irradiation could provide a better chance of survival in these patients.

9.
Bioelectrochemistry ; 148: 108220, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35987061

RESUMEN

The aim of the current prospective pilot study exclusively for deep-seated soft tissue sarcomas (STS) was to evaluate efficacy and safety of bleomycin-based ECT using VEG (variable electrode geometry) electrodes. During a 2-year period, seven surgically inoperable STSs were treated at the University of Szeged, Department of Surgery in Hungary. Electrode placement was determined by software planning using preoperative imaging (CT/MRI) and intraoperative ultrasound. Intravenous bleomycin (15.000 IU/m2) was administered 8 min before first pulse generation which lasted up to 40 min. Tumour response was evaluated through CT/MRI 2 months after treatment as per RECIST v.1.1. Five male- and 2 female patients were treated with fibromyxoid sarcoma (n = 2), epitheloid sarcoma (n = 3), liposarcoma (n = 1) and myofibroblastic sarcoma (n = 1) with median age of 54 years (49-88). Median tumour diameter, tumour volume and tumour depth was 5.9 cm (3.7-22.5), 131.13 cm3 (35.6-2456.22) and 6.18 cm (3.74-18.18), respectively. Median operative time was 75 min (35-180), median hospital stay 2 days (2-20). Two month follow-up confirmed partial response in 5 patients, while stable disease in 1 patient, and progressive disease in 1 case as per RECIST v.1.1. Grade 2 ulceration was experienced in four cases, and a transient left musculus quadriceps femoris plegia occured in one patient. Local control of deep-seated STSs with BLM-based VEG ECT holds a promising perspective and our results may serve as a practical guide for further investigation and treatment planning.


Asunto(s)
Electroquimioterapia , Sarcoma , Anciano , Anciano de 80 o más Años , Bleomicina/uso terapéutico , Electroquimioterapia/métodos , Electrodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Sarcoma/diagnóstico por imagen , Sarcoma/tratamiento farmacológico , Resultado del Tratamiento
10.
Radiother Oncol ; 173: 49-54, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35661675

RESUMEN

BACKGROUND AND PURPOSE: Continuing recent experiments at the research electron accelerator ELBE at the Helmholtz-Zentrum Dresden-Rossendorf the influence of beam pulse structure on the Flash effect was investigated. MATERIALS AND METHODS: The proton beam pulse structure of an isochronous cyclotron (UHDRiso) and a synchrocyclotron (UHDRsynchro) was mimicked at ELBE by quasi-continuous electron bunches at 13 MHz delivering mean dose rates of 287 Gy/s and 177 Gy/s and bunch dose rates of 106Gy/s and 109 Gy/s, respectively. For UHDRsynchro, 40 ms macro pulses at a frequency of 25 Hz superimposed the bunch delivery. For comparison, a maximum beam intensity (2.5 × 105 Gy/s mean and ∼109 Gy/s bunch dose rate) and a reference irradiation (of ∼8 Gy/min mean dose rate) were applied. Radiation induced changes were assessed in zebrafish embryos over four days post irradiation. RESULTS: Relative to the reference a significant protecting Flash effect was observed for all electron beam pulse regimes with less severe damage the higher the mean dose rate of the electron beam. Accordingly, the macro pulsing induced prolongation of treatment time at UHDRsynchro regime reduces the protecting effect compared to the maximum regime delivered at same bunch but higher mean dose rate. The Flash effect of the UHDRiso regime was confirmed at a clinical isochronous cyclotron comparing the damage induced by proton beams delivered at 300 Gy/s and ∼9 Gy/min. CONCLUSION: The recent findings indicate that the mean dose rate or treatment time are decisive for the normal tissue protecting Flash effect in zebrafish embryo.


Asunto(s)
Protones , Pez Cebra , Animales , Electrones , Dosificación Radioterapéutica
11.
Pathol Oncol Res ; 27: 1609798, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267604

RESUMEN

Skeletal muscle status and its dynamic follow up are of particular importance in the management of several diseases where weight and muscle mass loss and, consequently, immobilization occurs, as in cancer and its treatment, as well as in neurodegenerative disorders. But immobilization is not the direct result of body and muscle mass loss, but rather the loss of the maximal tension capabilities of the skeletal muscle. Therefore, the development of a non-invasive and real-time method which can measure muscle tension capabilities in immobile patients is highly anticipated. Our aim was to introduce and evaluate a special ultrasound measurement technique to estimate a maximal muscle tension characteristic which can be used in medicine and also in sports diagnostics. Therefore, we determined the relationship between the results of shear wave elastography measurements and the dynamometric data of individuals. The measurements were concluded on the m. vastus lateralis. Twelve healthy elite athletes took part in our preliminary proof of principle study-five endurance (S) and seven strength (F) athletes showing unambiguously different muscle composition features, nine healthy subjects (H) without prior sports background, and four cancer patients in treatment for a stage 3 brain tumor (T). Results showed a high correlation between the maximal dynamometric isometric torque (Mmax) and mean elasticity value (E) for the non-athletes [(H + T), (r = 0.795)] and for the athletes [(S + F), (r = 0.79)]. For the athletes (S + F), the rate of tension development at contraction (RTDk) and E correlation was also determined (r = 0.84, p < 0.05). Our measurements showed significantly greater E values for the strength athletes with fast muscle fiber dominance than endurance athletes with slow muscle fiber dominance (p < 0.05). Our findings suggest that shear wave ultrasound elastography is a promising method for estimating maximal muscle tension and, also, the human skeletal muscle fiber ratio. These results warrant further investigations with a larger number of individuals, both in medicine and in sports science.


Asunto(s)
Atletas/estadística & datos numéricos , Composición Corporal , Diagnóstico por Imagen de Elasticidad/métodos , Contracción Muscular , Fuerza Muscular , Músculo Esquelético/fisiología , Ultrasonografía/métodos , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Resistencia al Corte , Adulto Joven
12.
Radiother Oncol ; 158: 7-12, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33587970

RESUMEN

BACKGROUND AND PURPOSE: In consequence of a previous study, where no protecting proton Flash effect was found for zebrafish embryos, potential reasons and requirements for inducing a Flash effect should be investigated with higher pulse dose rate and partial oxygen pressure (pO2) as relevant parameters. MATERIALS AND METHODS: The experiments were performed at the research electron accelerator ELBE, whose variable pulse structure enables dose delivery as electron Flash and quasi-continuously (reference irradiation). Zebrafish embryos were irradiated with ~26 Gy either continuously at a dose rate of ~6.7 Gy/min (reference) or by 1441 electron pulses within 111 µs at a pulse dose rate of 109 Gy/s and a mean dose rate of 105Gy/s, respectively. Using the OxyLite system to measure the pO2 a low- (pO2 ≤ 5 mmHg) and a high-pO2 group were defined on basis of the oxygen depletion kinetics in sealed embryo samples. RESULTS: A protective Flash effect was seen for most endpoints ranging from 4 % less reduction in embryo length to about 20-25% less embryos with spinal curvature and pericardial edema, relative to reference irradiation. The reduction of pO2 below atmospheric levels (148 mmHg) resulted in higher protection, which was however more pronounced in the low-pO2 group. CONCLUSION: The Flash experiment at ELBE showed that the zebrafish embryo model is appropriate for studying the radiobiological response of high dose rate irradiation. The applied high pulse dose rate was confirmed as important beam parameter as well as the pivotal role of pO2 during irradiation.


Asunto(s)
Electrones , Pez Cebra , Animales , Oxígeno , Protones
13.
Pathol Oncol Res ; 27: 1609971, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35370480

RESUMEN

The quantitative detection of radiation caused DNA double-strand breaks (DSB) by immunostained γ-H2AX foci using direct stochastic optical reconstruction microscopy (dSTORM) provides a deeper insight into the DNA repair process at nanoscale in a time-dependent manner. Glioblastoma (U251) cells were irradiated with 250 keV X-ray at 0, 2, 5, 8 Gy dose levels. Cell cycle phase distribution and apoptosis of U251 cells upon irradiation was assayed by flow cytometry. We studied the density, topology and volume of the γ-H2AX foci with 3D confocal microscopy and the dSTORM superresolution method. A pronounced increase in γ-H2AX foci and cluster density was detected by 3D confocal microscopy after 2 Gy, at 30 min postirradiation, but both returned to the control level at 24 h. Meanwhile, at 24 h a considerable amount of residual foci could be measured from 5 Gy, which returned to the normal level 48 h later. The dSTORM based γ-H2AX analysis revealed that the micron-sized γ-H2AX foci are composed of distinct smaller units with a few tens of nanometers. The density of these clusters, the epitope number and the dynamics of γ-H2AX foci loss could be analyzed. Our findings suggest a discrete level of repair enzyme capacity and the restart of the repair process for the residual DSBs, even beyond 24 h. The dSTORM superresolution technique provides a higher precision over 3D confocal microscopy to study radiation induced γ-H2AX foci and molecular rearrangements during the repair process, opening a novel perspective for radiation research.


Asunto(s)
Histonas , Microscopía , Daño del ADN , Reparación del ADN , Histonas/genética , Humanos , Microscopía/métodos , Radiación Ionizante
14.
Anticancer Res ; 40(11): 6123-6135, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33109550

RESUMEN

BACKGROUND/AIM: The importance of hadron therapy in the cancer management is growing. We aimed to refine the biological effect detection using a vertebrate model. MATERIALS AND METHODS: Embryos at 24 and 72 h postfertilization were irradiated at the entrance plateau and the mid spread-out Bragg peak of a 150 MeV proton beam and with reference photons. Radiation-induced DNA double-strand breaks (DSB) and histopathological changes of the eye, muscles and brain were evaluated; deterioration of specific organs (eye, yolk sac, body) was measured. RESULTS: More and longer-lasting DSBs occurred in eye and muscle cells due to proton versus photon beams, albeit in different numbers. Edema, necrosis and tissue disorganization, (especially in the eye) were observed. Dose-dependent morphological deteriorations were detected at ≥10 Gy dose levels, with relative biological effectiveness between 0.99±0.07 (length) and 1.12±0.19 (eye). CONCLUSION: Quantitative assessment of radiation induced changes in zebrafish embryos proved to be beneficial for the radiobiological characterization of proton beams.


Asunto(s)
Fotones , Protones , Pez Cebra/fisiología , Animales , Encéfalo/efectos de la radiación , Daño del ADN , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Embrión no Mamífero/efectos de la radiación , Ojo/patología , Ojo/efectos de la radiación , Cinética , Tamaño de los Órganos/efectos de la radiación , Efectividad Biológica Relativa , Saco Vitelino/patología , Saco Vitelino/efectos de la radiación , Pez Cebra/embriología
15.
Pathol Oncol Res ; 26(4): 2651-2658, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32648211

RESUMEN

The aim of the present study was to evaluate the efficacy of re-irradiation (re-RT) in patients with advanced local relapses of glial tumours and to define the factors influencing the result of the hyper-fractionated external beam therapy on progression after primary management. We have analysed the data of 55 patients with brain tumours (GBM: 28) on progression, who were re-irradiated between January 2007 and December 2018. The mean volume of the recurrent tumour was 118 cm3, and the mean planning target volume (PTV) was 316 cm3, to which 32 Gy was delivered in 20 fractions at least 7.7 months after the first radiotherapy, using 3D conformal radiotherapy (CRT) or intensity modulated radiotherapy (IMRT). The median overall survival (mOS) from the re-RT was 8.4 months, and the 6-month and the 12-month OS rate was 64% and 31%, respectively. The most important factors by univariate analysis, which significantly improved the outcome of re-RT were the longer time interval between the diagnosis and second radiotherapy (p = 0.029), the lower histology grade (p = 0.034), volume of the recurrent tumour (p = 0.006) and Karnofsky performance status (KPS) (p = 0.009) at the re-irradiation. Our low fraction size re-irradiation ≥ 8 months after the first radiotherapy proved to be safe and beneficial for patients with large volume recurrent glial tumours.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioma/radioterapia , Radioterapia Conformacional/mortalidad , Reirradiación/mortalidad , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/patología , Niño , Femenino , Estudios de Seguimiento , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Dosificación Radioterapéutica , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
16.
Rev Sci Instrum ; 91(6): 063303, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611048

RESUMEN

The development from single shot basic laser plasma interaction research toward experiments in which repetition rated laser-driven ion sources can be applied requires technological improvements. For example, in the case of radio-biological experiments, irradiation duration and reproducible controlled conditions are important for performing studies with a large number of samples. We present important technological advancements of recent years at the ATLAS 300 laser in Garching near Munich since our last radiation biology experiment. Improvements range from target positioning over proton transport and diagnostics to specimen handling. Exemplarily, we show the current capabilities by performing an application oriented experiment employing the zebrafish embryo model as a living vertebrate organism for laser-driven proton irradiation. The size, intensity, and energy of the laser-driven proton bunches resulted in evaluable partial body changes in the small (<1 mm) embryos, confirming the feasibility of the experimental system. The outcomes of this first study show both the appropriateness of the current capabilities and the required improvements of our laser-driven proton source for in vivo biological experiments, in particular the need for accurate, spatially resolved single bunch dosimetry and image guidance.


Asunto(s)
Aceleración , Embrión no Mamífero/efectos de la radiación , Rayos Láser , Protones , Radiobiología/métodos , Pez Cebra/embriología , Animales , Estudios de Factibilidad
17.
Anticancer Res ; 40(8): 4237-4244, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32727750

RESUMEN

BACKGROUND/AIM: To study the changes of glioblastoma multiforme during chemoradiotherapy (CRT) and to evaluate the impact of changes on dosimetry and clinical outcomes. PATIENTS AND METHODS: Forty-three patients underwent volumetric imaging-based replanning. Prognostic factors and gross tumor volume changes in relation to overall survival and the effect of adaptive replanning were statistically analyzed. RESULTS: Patients with total tumor removal, with shorter time to CRT (<27 days), with methylated O-6 methylguanine DNA methyltransferase and good performance status (>60%) had better survival. Tumor shrinkage in 24 patients resulted in improved survival compared to 19 in whom tumor was unchanged or progressed (25.3 vs. 11.1 months, p=0.04). Adapted planning target volume allowed a reduction in irradiated volume, while increasing survival (12.06 vs. 28.98 months, p=0.026). CONCLUSION: Tumor response during CRT has significant impact on the outcome. Adaptation of the planning target volume to the tumor changes proved to be beneficial and warrants further investigation.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/tratamiento farmacológico , Quimioradioterapia/métodos , Niño , Preescolar , Femenino , Glioblastoma/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
18.
Nanomaterials (Basel) ; 10(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963267

RESUMEN

Radiosensitizing agents are capable of augmenting the damage of ionizing radiation preferentially on cancer cells, thereby increasing the potency and the specificity of radiotherapy. Metal-based nanoparticles have recently gathered ground in radio-enhancement applications, owing to their exceptional competence in amplifying the cell-killing effects of irradiation. Our aim was to examine the radiosensitizing performance of gold nanoparticles (AuNPs) and the chromatin-modifying histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alone and in combination. We observed that the colony-forming capability of cancer cells decreased significantly and the DNA damage, detected by γH2AX immunostaining, was substantially greater after combinational treatments than upon individual drug exposures followed by irradiation. Synergistic radiosensitizing effects of AuNPs and SAHA were proven on various cell lines, including radioresistant A549 and DU-145 cancer cells. 3D cultures often manifest radio- and drug-resistance, nevertheless, AuNPs in combination with SAHA could effectively enhance the potency of irradiation as the number of viable cells decreased significantly when spheroids received AuNP + SAHA prior to radiotherapy. Our results imply that a relaxed chromatin structure induced by SAHA renders the DNA of cancerous cells more susceptible to the damaging effects of irradiation-triggered, AuNP-released reactive electrons. This feature of AuNPs should be exploited in multimodal treatment approaches.

19.
Pathol Oncol Res ; 26(1): 149-157, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29344836

RESUMEN

Our retrospective analysis aimed to evaluate the clinical value of dose intensification schemes: WBRT and consecutive, delayed, or simultaneous integrated boost (SIB) in brain metastasis (BM) management. Clinical data and overall survival (OS) of 468 patients with BM from various primaries treated with 10 × 3 Gy WBRT (n = 195), WBRT+ 10 × 2 Gy boost (n = 125), or simultaneously 15 × 2.2 Gy WBRT+0.7 Gy boost (n = 148) during a 6-year period were statistically analysed. Significant difference in OS could be detected with additional boost to WBRT (3.3 versus 6.5 months) and this difference was confirmed for BMs of lung cancer and melanoma and both for oligo- and multiplex lesions. The OS was prolonged for the RPA 2 and RPA3 categories, if patients received escalated dose, 4.0 vs. 7.7 months; (p = 0.002) in class RPA2 and 2.6 vs. 4.2 months; (p < 0.0001) in the class RPA 3 respectively. The significant difference in OS was also achieved with SIB. The shortened overall treatment time of SIB with lower WBRT fraction dose exhibited survival benefit over WBRT alone, and could be applied for patients developing BM even with unfavourable prognostic factors. These results warrant for further study of this approach with dose escalation using the lately available solutions for hippocampus sparing and fractionated stereotactic irradiation. The simultaneous delivery of WBRT with reduced fraction dose and boost proved to be advantageous prolonging the OS with shortened treatment time and reduced probability for cognitive decline development even for patients with poor performance status and progressing extracranial disease.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Irradiación Craneana , Reirradiación , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/mortalidad , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica , Estudios Retrospectivos , Análisis de Supervivencia , Adulto Joven
20.
Phys Med ; 68: 35-40, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31733404

RESUMEN

PURPOSE: The aim of this retrospective study was to investigate the relationship between the dose to the subventricular zone (SVZ) and overall survival (OS) of 41 patients with glioblastoma multiforme (GBM), who were treated with an adaptive approach involving repeated topometric CT and replanning at two-thirds (40 Gy) of their course of postoperative radiotherapy for planning of a 20 Gy boost. METHODS: We examined changes in the ipsilateral lateral ventricle (LV) and SVZ (iLV and iSVZ), as well as in the contralateral LV and SVZ (cLV and cSVZ). We evaluated the volumetric changes on both planning CT scans (primary CT1 and secondary CT2). The survival of the GBM patients was analyzed using the Kaplan-Meier method; the multivariate Cox regression was also performed. RESULTS: Median follow-up and OS were 34.5 months and 17.6 months, respectively. LV and SVZ structures exhibited significant volumetric changes on CT2, resulting in an increase of dose coverage. At a cut-off point of 58 Gy, a significant correlation was detected between the iSVZ2 mean dose and OS (27.8 vs 15.6 months, p = 0.048). In a multivariate analysis, GBM patients with a shorter time to postoperative chemoradiotherapy (<3.8 weeks), with good performance status (≥70%) and higher mean dose (≥58 Gy) to the iSVZ2 had significantly better OS. CONCLUSIONS: Significant anatomical and dose distribution changes to the brain structures were observed, which have a relevant impact on the dose-effect relationship for GBM; therefore, involving the iSVZ in the target volume should be considered and adapted to the changes.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Ventrículos Laterales/efectos de la radiación , Adulto , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Humanos , Ventrículos Laterales/diagnóstico por imagen , Masculino , Periodo Posoperatorio , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Análisis de Supervivencia , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...