Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 19(1): 88, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345028

RESUMEN

BACKGROUND: While aging is the main risk factor for Alzheimer´s disease (AD), emerging evidence suggests that metabolic alterations such as type 2 diabetes (T2D) are also major contributors. Indeed, several studies have described a close relationship between AD and T2D with clinical evidence showing that both diseases coexist. A hallmark pathological event in AD is amyloid-ß (Aß) deposition in the brain as either amyloid plaques or around leptomeningeal and cortical arterioles, thus constituting cerebral amyloid angiopathy (CAA). CAA is observed in 85-95% of autopsy cases with AD and it contributes to AD pathology by limiting perivascular drainage of Aß. METHODS: To further explore these alterations when AD and T2D coexist, we have used in vivo multiphoton microscopy to analyze over time the Aß deposition in the form of plaques and CAA in a relevant model of AD (APPswe/PS1dE9) combined with T2D (db/db). We have simultaneously assessed the effects of high-fat diet-induced prediabetes in AD mice. Since both plaques and CAA are implicated in oxidative-stress mediated vascular damage in the brain, as well as in the activation of matrix metalloproteinases (MMP), we have also analyzed oxidative stress by Amplex Red oxidation, MMP activity by DQ™ Gelatin, and vascular functionality. RESULTS: We found that prediabetes accelerates amyloid plaque and CAA deposition, suggesting that initial metabolic alterations may directly affect AD pathology. T2D significantly affects vascular pathology and CAA deposition, which is increased in AD-T2D mice, suggesting that T2D favors vascular accumulation of Aß. Moreover, T2D synergistically contributes to increase CAA mediated oxidative stress and MMP activation, affecting red blood cell velocity. CONCLUSIONS: Our data support the cross-talk between metabolic disease and Aß deposition that affects vascular integrity, ultimately contributing to AD pathology and related functional changes in the brain microvasculature.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Diabetes Mellitus Tipo 2 , Estado Prediabético , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Estado Prediabético/complicaciones , Estado Prediabético/metabolismo , Estado Prediabético/patología , Angiopatía Amiloide Cerebral/metabolismo , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/complicaciones , Placa Amiloide/metabolismo , Placa Amiloide/patología , Encéfalo/metabolismo , Metaloproteinasas de la Matriz
2.
Biomolecules ; 11(2)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578998

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. Epidemiological studies show the association between AD and type 2 diabetes (T2DM), although the mechanisms are not fully understood. Dietary habits and lifestyle, that are risk factors in both diseases, strongly modulate gut microbiota composition. Also, the brain-gut axis plays a relevant role in AD, diabetes and inflammation, through products of bacterial metabolism, like short-chain fatty acids. We provide a comprehensive review of current literature on the relation between dysbiosis, altered inflammatory cytokines profile and microglia in preclinical models of AD, T2DM and models that reproduce both diseases as commonly observed in the clinic. Increased proinflammatory cytokines, such as IL-1ß and TNF-α, are widely detected. Microbiome analysis shows alterations in Actinobacteria, Bacteroidetes or Firmicutes phyla, among others. Altered α- and ß-diversity is observed in mice depending on genotype, gender and age; therefore, alterations in bacteria taxa highly depend on the models and approaches. We also review the use of pre- and probiotic supplements, that by favoring a healthy microbiome ameliorate AD and T2DM pathologies. Whereas extensive studies have been carried out, further research would be necessary to fully understand the relation between diet, microbiome and inflammation in AD and T2DM.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Complicaciones de la Diabetes/metabolismo , Dieta , Microbiota , Actinobacteria/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/microbiología , Animales , Bacteroidetes/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/microbiología , Modelos Animales de Enfermedad , Firmicutes/metabolismo , Microbioma Gastrointestinal , Humanos , Inflamación , Estilo de Vida , Ratones , Estado Prediabético/metabolismo , Estado Prediabético/microbiología , Probióticos , Factores de Riesgo
3.
Neuropsychopharmacology ; 46(6): 1207-1219, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33335309

RESUMEN

Hippocampal neurogenesis has widely been linked to memory and learning performance. New neurons generated from neural stem cells (NSC) within the dentate gyrus of the hippocampus (DG) integrate in hippocampal circuitry participating in memory tasks. Several neurological and neuropsychiatric disorders show cognitive impairment together with a reduction in DG neurogenesis. Growth factors secreted within the DG promote neurogenesis. Protein kinases of the protein kinase C (PKC) family facilitate the release of several of these growth factors, highlighting the role of PKC isozymes as key target molecules for the development of drugs that induce hippocampal neurogenesis. PKC activating diterpenes have been shown to facilitate NSC proliferation in neurogenic niches when injected intracerebroventricularly. We show in here that long-term administration of diterpene ER272 promotes neurogenesis in the subventricular zone and in the DG of mice, affecting neuroblasts differentiation and neuronal maturation. A concomitant improvement in learning and spatial memory tasks performance can be observed. Insights into the mechanism of action reveal that this compound facilitates classical PKCα activation and promotes transforming growth factor alpha (TGFα) and, to a lesser extent, neuregulin release. Our results highlight the role of this molecule in the development of pharmacological drugs to treat neurological and neuropsychiatric disorders associated with memory loss and a deficient neurogenesis.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Animales , Cognición , Giro Dentado , Hipocampo , Ratones , Neuronas
4.
Front Aging Neurosci ; 13: 741923, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975451

RESUMEN

Alzheimer's disease is the most common form of dementia, and epidemiological studies support that type 2 diabetes (T2D) is a major contributor. The relationship between both diseases and the fact that Alzheimer's disease (AD) does not have a successful treatment support the study on antidiabetic drugs limiting or slowing down brain complications in AD. Among these, liraglutide (LRGT), a glucagon-like peptide-1 agonist, is currently being tested in patients with AD in the Evaluating Liraglutide in Alzheimer's Disease (ELAD) clinical trial. However, the effects of LRGT on brain pathology when AD and T2D coexist have not been assessed. We have administered LRGT (500 µg/kg/day) to a mixed murine model of AD and T2D (APP/PS1xdb/db mice) for 20 weeks. We have evaluated metabolic parameters as well as the effects of LRGT on learning and memory. Postmortem analysis included assessment of brain amyloid-ß and tau pathologies, microglia activation, spontaneous bleeding and neuronal loss, as well as insulin and insulin-like growth factor 1 receptors. LRGT treatment reduced glucose levels in diabetic mice (db/db and APP/PS1xdb/db) after 4 weeks of treatment. LRGT also helped to maintain insulin levels after 8 weeks of treatment. While we did not detect any effects on cortical insulin or insulin-like growth factor 1 receptor m-RNA levels, LRGT significantly reduced brain atrophy in the db/db and APP/PS1xdb/db mice. LRGT treatment also rescued neuron density in the APP/PS1xdb/db mice in the proximity (p = 0.008) far from amyloid plaques (p < 0.001). LRGT reduced amyloid plaque burden in the APP/PS1 animals (p < 0.001), as well as Aß aggregates levels (p = 0.046), and tau hyperphosphorylation (p = 0.009) in the APP/PS1xdb/db mice. Spontaneous bleeding was also ameliorated in the APP/PS1xdb/db animals (p = 0.012), and microglia burden was reduced in the proximity of amyloid plaques in the APP/PS1 and APP/PS1xdb/db mice (p < 0.001), while microglia was reduced in areas far from amyloid plaques in the db/db and APP/PS1xdb/db mice (p < 0.001). This overall improvement helped to rescue cognitive impairment in AD-T2D mice in the new object discrimination test (p < 0.001) and Morris water maze (p < 0.001). Altogether, our data support the role of LRGT in reduction of associated brain complications when T2D and AD occur simultaneously, as regularly observed in the clinical arena.

5.
Front Cell Dev Biol ; 8: 571258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33043002

RESUMEN

The germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most devastating complications of prematurity. The short- and long-term neurodevelopmental consequences after severe GM-IVH are a major concern for neonatologists. These kids are at high risk of psychomotor alterations and cerebral palsy; however, therapeutic approaches are limited. Erythropoietin (EPO) has been previously used to treat several central nervous system complications due to its role in angiogenesis, neurogenesis and as growth factor. In addition, EPO is regularly used to reduce the number of transfusions in the preterm infant. Moreover, EPO crosses the blood-brain barrier and EPO receptors are expressed in the human brain throughout development. To analyze the role of EPO in the GM-IVH, we have administered intraventricular collagenase (Col) to P7 mice, as a model of GM-IVH of the preterm infant. After EPO treatment, we have characterized our animals in the short (14 days) and the long (70 days) term. In our hands, EPO treatment significantly limited brain atrophy and ventricle enlargement. EPO also restored neuronal density and ameliorated dendritic spine loss. Likewise, inflammation and small vessel bleeding were also reduced, resulting in the preservation of learning and memory abilities. Moreover, plasma gelsolin levels, as a feasible peripheral marker of GM-IVH-induced damage, recovered after EPO treatment. Altogether, our data support the positive effect of EPO treatment in our preclinical model of GM-IVH, both in the short and the long term.

6.
Alzheimers Res Ther ; 12(1): 40, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264944

RESUMEN

BACKGROUND: Both Alzheimer's disease (AD) and type 2 diabetes (T2D) share common pathological features including inflammation, insulin signaling alterations, or vascular damage. AD has no successful treatment, and the close relationship between both diseases supports the study of antidiabetic drugs to limit or slow down brain pathology in AD. Empagliflozin (EMP) is a sodium-glucose co-transporter 2 inhibitor, the newest class of antidiabetic agents. EMP controls hyperglycemia and reduces cardiovascular comorbidities and deaths associated to T2D. Therefore, we have analyzed the role of EMP at the central level in a complex mouse model of AD-T2D. METHODS: We have treated AD-T2D mice (APP/PS1xdb/db mice) with EMP 10 mg/kg for 22 weeks. Glucose, insulin, and body weight were monthly assessed. We analyzed learning and memory in the Morris water maze and the new object discrimination test. Postmortem brain assessment was conducted to measure brain atrophy, senile plaques, and amyloid-ß levels. Tau phosphorylation, hemorrhage burden, and microglia were also measured in the brain after EMP treatment. RESULTS: EMP treatment helped to maintain insulin levels in diabetic mice. At the central level, EMP limited cortical thinning and reduced neuronal loss in treated mice. Hemorrhage and microglia burdens were also reduced in EMP-treated mice. Senile plaque burden was lower, and these effects were accompanied by an amelioration of cognitive deficits in APP/PS1xdb/db mice. CONCLUSIONS: Altogether, our data support a feasible role for EMP to reduce brain complications associated to AD and T2D, including classical pathological features and vascular disease, and supporting further assessment of EMP at the central level.


Asunto(s)
Enfermedad de Alzheimer , Compuestos de Bencidrilo , Disfunción Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Glucósidos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Compuestos de Bencidrilo/uso terapéutico , Encéfalo/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Glucósidos/uso terapéutico , Masculino , Ratones , Ratones Transgénicos
7.
J Neurochem ; 154(6): 673-692, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32068886

RESUMEN

The classic neuropathological features of Alzheimer's disease (AD) are accompanied by other complications, including alterations in adult cell proliferation and neurogenesis. Moreover recent studies have shown that traditional markers of the neurogenic process, such as doublecortin (DCX), may also be expressed in CD8+ T cells and ionized calcium-binding adaptor molecule 1 (Iba1+ ) microglia, in the close proximity to senile plaques, increasing the complexity of the condition. Altered glucose tolerance, observed in metabolic alteratioins, may accelerate the neurodegenerative process and interfere with normal adult cell proliferation and neurogenesis. To further explore the role of metabolic disease in AD, we analyzed cell proliferation and neurogenesis using 5'-bromo-2'-deoxyuridine and DCX immunohistochemistry in three different mouse models of AD and metabolic alterations: APP/PS1xdb/db mice, APP/PS1 mice on a long-term high-fat diet, and APP/PS1 mice treated with streptozotozin. As reported previously, an overall reduction in cell proliferation and neurogenesis was observed after streptozotocin administration. In contrast, an increase in cell proliferation and neurogenesis was detected in neurogenic niches in 14- and 26-week-old APP/PS1xdb/db mice, accompanied by a slight increase in cortical cell proliferation. While a similar trend was observed in animals on a high-fat diet, differences were not statistically significant. We observed very few DCX+ /CD8+ cells and no DCX+ /Iba1+ cells were observed in the close proximity to senile plaques in any of the groups. Interestingly, metabolic parameters such as body weight and glucose and insulin levels were identified as reliable predictors of cell proliferation and neurogenesis in APP/PS1xdb/db mice. Furthermore, metabolic parameters were also associated with altered Aß levels in the cortex and hippocampus of APP/PS1xdb/db mice. Altogether, our data suggest that metabolic disease may also interfere with central complications in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Proliferación Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Neurogénesis , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Bromodesoxiuridina/farmacología , Antígenos CD8/genética , Antígenos CD8/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Masculino , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Oligopéptidos/genética , Fragmentos de Péptidos/metabolismo
8.
J Neuroinflammation ; 17(1): 38, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992349

RESUMEN

BACKGROUND: Diabetes is a risk factor for developing Alzheimer's disease (AD); however, the mechanism by which diabetes can promote AD pathology remains unknown. Diabetes results in diverse molecular changes in the brain, including dysregulation of glucose metabolism and loss of cerebrovascular homeostasis. Although these changes have been associated with increased Aß pathology and increased expression of glial activation markers in APPswe/PS1dE9 (APP/PS1) mice, there has been limited characterization, to date, of the neuroinflammatory changes associated with diabetic conditions. METHODS: To more fully elucidate neuroinflammatory changes associated with diabetes that may drive AD pathology, we combined the APP/PS1 mouse model with either high-fat diet (HFD, a model of pre-diabetes), the genetic db/db model of type 2 diabetes, or the streptozotocin (STZ) model of type 1 diabetes. We then used a multiplexed immunoassay to quantify cortical changes in cytokine proteins. RESULTS: Our analysis revealed that pathology associated with either db/db, HFD, or STZ models yielded upregulation of a broad profile of cytokines, including chemokines (e.g., MIP-1α, MIP-1ß, and MCP-1) and pro-inflammatory cytokines, including IL-1α, IFN-γ, and IL-3. Moreover, multivariate partial least squares regression analysis showed that combined diabetic-APP/PS1 models yielded cooperatively enhanced expression of the cytokine profile associated with each diabetic model alone. Finally, in APP/PS1xdb/db mice, we found that circulating levels of Aß1-40, Aß1-42, glucose, and insulin all correlated with cytokine expression in the brain, suggesting a strong relationship between peripheral changes and brain pathology. CONCLUSIONS: Altogether, our multiplexed analysis of cytokines shows that Alzheimer's and diabetic pathologies cooperate to enhance profiles of cytokines reported to be involved in both diseases. Moreover, since many of the identified cytokines promote neuronal injury, Aß and tau pathology, and breakdown of the blood-brain barrier, our data suggest that neuroinflammation may mediate the effects of diabetes on AD pathogenesis. Therefore, strategies targeting neuroinflammatory signaling, as well as metabolic control, may provide a promising strategy for intervening in the development of diabetes-associated AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Citocinas/biosíntesis , Diabetes Mellitus Experimental/metabolismo , Péptidos beta-Amiloides/sangre , Animales , Glucemia/análisis , Corteza Cerebral/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Humanos , Insulina/sangre , Ratones , Ratones Transgénicos , Microglía/metabolismo , Estreptozocina
9.
Sci Rep ; 9(1): 18696, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822756

RESUMEN

Huntington disease (HD) is a fatal neurodegenerative disorder without a cure that is caused by an aberrant expansion of CAG repeats in exon 1 of the huntingtin (HTT) gene. Although a negative correlation between the number of CAG repeats and the age of disease onset is established, additional factors may contribute to the high heterogeneity of the complex manifestation of symptoms among patients. This variability is also observed in mouse models, even under controlled genetic and environmental conditions. To better understand this phenomenon, we analysed the R6/1 strain in search of potential correlates between pathological motor/cognitive phenotypical traits and transcriptional alterations. HD-related genes (e.g., Penk, Plk5, Itpka), despite being downregulated across the examined brain areas (the prefrontal cortex, striatum, hippocampus and cerebellum), exhibited tissue-specific correlations with particular phenotypical traits that were attributable to the contribution of the brain region to that trait (e.g., striatum and rotarod performance, cerebellum and feet clasping). Focusing on the striatum, we determined that the transcriptional dysregulation associated with HD was partially exacerbated in mice that showed poor overall phenotypical scores, especially in genes with relevant roles in striatal functioning (e.g., Pde10a, Drd1, Drd2, Ppp1r1b). However, we also observed transcripts associated with relatively better outcomes, such as Nfya (CCAAT-binding transcription factor NF-Y subunit A) plus others related to neuronal development, apoptosis and differentiation. In this study, we demonstrated that altered brain transcription can be related to the manifestation of HD-like symptoms in mouse models and that this can be extrapolated to the highly heterogeneous population of HD patients.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Transcripción Genética/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neostriado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Transcriptoma/genética , Expansión de Repetición de Trinucleótido/genética
10.
Front Aging Neurosci ; 10: 218, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30072888

RESUMEN

Neuroimaging has become an unparalleled tool to understand the central nervous system (CNS) anatomy, physiology and neurological diseases. While an altered immune function and microglia hyperactivation are common neuropathological features for many CNS disorders and neurodegenerative diseases, direct assessment of the role of microglial cells remains a challenging task. Non-invasive neuroimaging techniques, including magnetic resonance imaging (MRI), positron emission tomography (PET) and single positron emission computed tomography (SPECT) are widely used for human clinical applications, and a variety of ligands are available to detect neuroinflammation. In animal models, intravital imaging has been largely used, and minimally invasive multiphoton microcopy (MPM) provides high resolution detection of single microglia cells, longitudinally, in living brain. In this study, we review in vivo real-time MPM approaches to assess microglia in preclinical studies, including individual cell responses in surveillance, support, protection and restoration of brain tissue integrity, synapse formation, homeostasis, as well as in different pathological situations. We focus on in vivo studies that assess the role of microglia in mouse models of Alzheimer's disease (AD), analyzing microglial motility and recruitment, as well as the role of microglia in anti-amyloid-ß treatment, as a key therapeutic approach to treat AD. Altogether, MPM provides a high contrast and high spatial resolution approach to follow microglia chronically in vivo in complex models, supporting MPM as a powerful tool for deep intravital tissue imaging.

11.
Mol Neurobiol ; 55(7): 6130-6144, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29224179

RESUMEN

Type 2 diabetes (T2D) is an important risk factor to suffer dementia, being Alzheimer's disease (AD) as the most common form. Both AD and T2D are closely related to aging and with a growing elderly population it might be of relevance to explore new therapeutic approaches that may slow or prevent central complications associated with metabolic disorders. Therefore, we propose the use of the antidiabetic polypill (PP), a pharmacological cocktail, commonly used by T2D patients that include metformin, aspirin, simvastatin, and an angiotensin-converting enzyme inhibitor. In order to test the effects of PP at the central level, we have long-term treated a new mixed model of AD-T2D, the APP/PS1xdb/db mouse. We have analyzed AD pathological features and the underlying specific characteristics that relate AD and T2D. As expected, metabolic alterations were ameliorated after PP treatment in diabetic mice, supporting a role for PP in maintaining pancreatic activity. At central level, PP reduced T2D-associated brain atrophy, showing both neuronal and synaptic preservation. Tau and amyloid pathologies were also reduced after PP treatment. Furthermore, we observed a reduction of spontaneous central bleeding and inflammation after PP treatment in diabetic mice. As consequence, learning and memory processes were improved after PP treatment in AD, T2D, and AD-T2D mice. Our data provide the basis to further analyze the role of PP, as an alternative or adjuvant, to slow down or delay the central complications associated with T2D and AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Polifarmacia , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Amiloide , Péptidos beta-Amiloides/metabolismo , Animales , Atrofia , Encéfalo/patología , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/patología , Disfunción Cognitiva/sangre , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Humanos , Hipoglucemiantes/farmacología , Inflamación/patología , Lípidos/sangre , Ratones Transgénicos , Neuronas/patología , Fosforilación , Sinapsis/patología , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...