Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
3.
Oxf Med Case Reports ; 2023(11): omad125, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38033403

RESUMEN

The number of cancer patients with severe aortic stenosis and atrial fibrillation (AF) is increasing in the aging population. Transcatheter aortic valve replacement (TAVR) is an established treatment option for severe aortic stenosis with high surgical risk, including individuals with cancer. Antithrombotic therapy should be considered for post-TAVR or AF patients. However, antithrombotic management in cancer patients remains challenging due to the increased risk of both thromboembolism and bleeding. We present a case of clinical valve thrombosis and arterial embolism after transcatheter aortic valve replacement in an elderly patient with a history of metastatic pancreatic cancer and permanent atrial fibrillation under treatment of single antiplatelet therapy. Warfarin treatment after successful surgical thrombectomy to the occluded arteries improved clinical valve thrombosis, although the long-term outcome remains unclear. This case demonstrates that novel management algorithms for thromboembolism and bleeding in elderly cancer patients with AF and valvular heart disease are urgently needed.

5.
Eur Heart J Digit Health ; 4(3): 254-264, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37265859

RESUMEN

Aims: The black box nature of artificial intelligence (AI) hinders the development of interpretable AI models that are applicable in clinical practice. We aimed to develop an AI model for classifying patients of reduced left ventricular ejection fraction (LVEF) from 12-lead electrocardiograms (ECG) with the decision-interpretability. Methods and results: We acquired paired ECG and echocardiography datasets from the central and co-operative institutions. For the central institution dataset, a random forest model was trained to identify patients with reduced LVEF among 29 907 ECGs. Shapley additive explanations were applied to 7196 ECGs. To extract the model's decision criteria, the calculated Shapley additive explanations values were clustered for 192 non-paced rhythm patients in which reduced LVEF was predicted. Although the extracted criteria were different for each cluster, these criteria generally comprised a combination of six ECG findings: negative T-wave inversion in I/V5-6 leads, low voltage in I/II/V4-6 leads, Q wave in V3-6 leads, ventricular activation time prolongation in I/V5-6 leads, S-wave prolongation in V2-3 leads, and corrected QT interval prolongation. Similarly, for the co-operative institution dataset, the extracted criteria comprised a combination of the same six ECG findings. Furthermore, the accuracy of seven cardiologists' ECG readings improved significantly after watching a video explaining the interpretation of these criteria (before, 62.9% ± 3.9% vs. after, 73.9% ± 2.4%; P = 0.02). Conclusion: We visually interpreted the model's decision criteria to evaluate its validity, thereby developing a model that provided the decision-interpretability required for clinical application.

7.
Circulation ; 147(4): 338-355, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36440584

RESUMEN

BACKGROUND: Mechanical stress on the heart, such as high blood pressure, initiates inflammation and causes hypertrophic heart disease. However, the regulatory mechanism of inflammation and its role in the stressed heart remain unclear. IL-1ß (interleukin-1ß) is a proinflammatory cytokine that causes cardiac hypertrophy and heart failure. Here, we show that neural signals activate the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3) inflammasome for IL-1ß production to induce adaptive hypertrophy in the stressed heart. METHODS: C57BL/6 mice, knockout mouse strains for NLRP3 and P2RX7 (P2X purinoceptor 7), and adrenergic neuron-specific knockout mice for SLC17A9, a secretory vesicle protein responsible for the storage and release of ATP, were used for analysis. Pressure overload was induced by transverse aortic constriction. Various animal models were used, including pharmacological treatment with apyrase, lipopolysaccharide, 2'(3')-O-(4-benzoylbenzoyl)-ATP, MCC950, anti-IL-1ß antibodies, clonidine, pseudoephedrine, isoproterenol, and bisoprolol, left stellate ganglionectomy, and ablation of cardiac afferent nerves with capsaicin. Cardiac function and morphology, gene expression, myocardial IL-1ß and caspase-1 activity, and extracellular ATP level were assessed. In vitro experiments were performed using primary cardiomyocytes and fibroblasts from rat neonates and human microvascular endothelial cell line. Cell surface area and proliferation were assessed. RESULTS: Genetic disruption of NLRP3 resulted in significant loss of IL-1ß production, cardiac hypertrophy, and contractile function during pressure overload. A bone marrow transplantation experiment revealed an essential role of NLRP3 in cardiac nonimmune cells in myocardial IL-1ß production and cardiac phenotype. Pharmacological depletion of extracellular ATP or genetic disruption of the P2X7 receptor suppressed myocardial NLRP3 inflammasome activity during pressure overload, indicating an important role of ATP/P2X7 axis in cardiac inflammation and hypertrophy. Extracellular ATP induced hypertrophic changes of cardiac cells in an NLRP3- and IL-1ß-dependent manner in vitro. Manipulation of the sympathetic nervous system suggested sympathetic efferent nerves as the main source of extracellular ATP. Depletion of ATP release from sympathetic efferent nerves, ablation of cardiac afferent nerves, or a lipophilic ß-blocker reduced cardiac extracellular ATP level, and inhibited NLRP3 inflammasome activation, IL-1ß production, and adaptive cardiac hypertrophy during pressure overload. CONCLUSIONS: Cardiac inflammation and hypertrophy are regulated by heart-brain interaction. Controlling neural signals might be important for the treatment of hypertensive heart disease.


Asunto(s)
Inflamasomas , Proteínas de Transporte de Nucleótidos , Ratones , Ratas , Humanos , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Inflamación , Arritmias Cardíacas , Encéfalo/metabolismo , Cardiomegalia , Adenosina Trifosfato/metabolismo , Interleucina-1beta/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo
8.
Commun Med (Lond) ; 2(1): 159, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494479

RESUMEN

BACKGROUND: In recent years, there has been considerable research on the use of artificial intelligence to estimate age and disease status from medical images. However, age estimation from chest X-ray (CXR) images has not been well studied and the clinical significance of estimated age has not been fully determined. METHODS: To address this, we trained a deep neural network (DNN) model using more than 100,000 CXRs to estimate the patients' age solely from CXRs. We applied our DNN to CXRs of 1562 consecutive hospitalized heart failure patients, and 3586 patients admitted to the intensive care unit with cardiovascular disease. RESULTS: The DNN's estimated age (X-ray age) showed a strong significant correlation with chronological age on the hold-out test data and independent test data. Elevated X-ray age is associated with worse clinical outcomes (heart failure readmission and all-cause death) for heart failure. Additionally, elevated X-ray age was associated with a worse prognosis in 3586 patients admitted to the intensive care unit with cardiovascular disease. CONCLUSIONS: Our results suggest that X-ray age can serve as a useful indicator of cardiovascular abnormalities, which will help clinicians to predict, prevent and manage cardiovascular diseases.


Chest X-ray is one of the most widely used medical imaging tests worldwide to diagnose and manage heart and lung diseases. In this study, we developed a computer-based tool to predict patients' age from chest X-rays. The tool precisely estimated patients' age from chest X-rays. Furthermore, in patients with heart failure and those admitted to the intensive care unit for cardiovascular disease, elevated X-ray age estimated by our tool was associated with poor clinical outcomes, including readmission for heart failure or death from any cause. With further testing, our tool may help clinicians to predict outcomes in patients with heart disease based on a simple chest X-ray.

9.
Biochem Biophys Res Commun ; 637: 247-253, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36410273

RESUMEN

Dopamine D1 receptor (D1R), coded by the Drd1 gene, is induced in cardiomyocytes of failing hearts, triggering heart failure-associated ventricular arrhythmia, and therefore could be a potential therapeutic target for chronic heart failure. The regulation of D1R expression, however, is not fully understood. Here, we explored the molecular mechanism by which cardiomyocyte D1R is induced in failing hearts. We performed motif analysis for the promoter region of the Drd1 gene using the transcription factor affinity prediction (TRAP) method and identified nuclear factor-kappa B (NF-κB) as a candidate transcriptional factor regulating the expression of the Drd1 gene. We next employed murine models of heart failure from chronic pressure overload by transverse aortic constriction (TAC), and assessed myocardial Drd1 expression levels and NF-κB activity, as well as endoplasmic reticulum (ER) stress, which has been implicated in the pathogenesis of heart failure. Drd1 induction in TAC hearts was dependent on the severity of heart failure, and was associated with NF-κB activation and ER stress, as assessed by p65 phosphorylation and the expression of ER stress-related genes, respectively. We further tested if Drd1 was induced by ER stress via NF-κB activation in cultured neonatal rat ventricular myocytes. Tunicamycin activated NF-κB pathway in an ER stress-dependent manner and increased Drd1 expression. Importantly, inhibition of NF-κB pathway by pretreatment with Bay11-7082 completely suppressed the tunicamycin-induced upregulation of Drd1, suggesting that NF-κB activation is essential to this regulation. Our study demonstrates the pivotal role for the ER stress-induced NF-κB activation in the induction of D1R in cardiomyocytes. Intervention of this pathway might be a potential new therapeutic strategy for heart failure-associated ventricular arrhythmia.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , Ratas , Animales , Ratones , Miocitos Cardíacos , Regulación hacia Arriba , FN-kappa B , Factor B del Complemento , Estrés del Retículo Endoplásmico , Tunicamicina , Receptores de Dopamina D1/genética , Insuficiencia Cardíaca/genética , Factores de Transcripción , Transducción de Señal
10.
PLoS One ; 17(10): e0276928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301966

RESUMEN

Coronary angiography (CAG) is still considered the reference standard for coronary artery assessment, especially in the treatment of acute coronary syndrome (ACS). Although aging causes changes in coronary arteries, the age-related imaging features on CAG and their prognostic relevance have not been fully characterized. We hypothesized that a deep neural network (DNN) model could be trained to estimate vascular age only using CAG and that this age prediction from CAG could show significant associations with clinical outcomes of ACS. A DNN was trained to estimate vascular age using ten separate frames from each of 5,923 CAG videos from 572 patients. It was then tested on 1,437 CAG videos from 144 patients. Subsequently, 298 ACS patients who underwent percutaneous coronary intervention (PCI) were analysed to assess whether predicted age by DNN was associated with clinical outcomes. Age predicted as a continuous variable showed mean absolute error of 4 years with R squared of 0.72 (r = 0.856). Among the ACS patients stratified by predicted age from CAG images before PCI, major adverse cardiovascular events (MACE) were more frequently observed in the older vascular age group than in the younger vascular age group (p = 0.017). Furthermore, after controlling for actual age, gender, peak creatine kinase, and history of heart failure, the older vascular age group independently suffered from more MACE (hazard ratio 2.14, 95% CI 1.07 to 4.29, p = 0.032). The vascular age estimated based on CAG imaging by DNN showed high predictive value. The age predicted from CAG images by DNN could have significant associations with clinical outcomes in patients with ACS.


Asunto(s)
Síndrome Coronario Agudo , Intervención Coronaria Percutánea , Humanos , Preescolar , Intervención Coronaria Percutánea/efectos adversos , Angiografía Coronaria/efectos adversos , Síndrome Coronario Agudo/tratamiento farmacológico , Pronóstico , Redes Neurales de la Computación , Factores de Riesgo
11.
Int Heart J ; 63(5): 939-947, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36104234

RESUMEN

Left ventricular dilatation (LVD) and left ventricular hypertrophy (LVH) are risk factors for heart failure, and their detection improves heart failure screening. This study aimed to investigate the ability of deep learning to detect LVD and LVH from a 12-lead electrocardiogram (ECG). Using ECG and echocardiographic data, we developed deep learning and machine learning models to detect LVD and LVH. We also examined conventional ECG criteria for the diagnosis of LVH. We calculated the area under the receiver operating characteristic (AUROC) curve, sensitivity, specificity, and accuracy of each model and compared the performance of the models. We analyzed data for 18,954 patients (mean age (standard deviation): 64.2 (16.5) years, men: 56.7%). For the detection of LVD, the value (95% confidence interval) of the AUROC was 0.810 (0.801-0.819) for the deep learning model, and this was significantly higher than that of the logistic regression and random forest methods (P < 0.001). The AUROCs for the logistic regression and random forest methods (machine learning models) were 0.770 (0.761-0.779) and 0.757 (0.747-0.767), respectively. For the detection of LVH, the AUROC was 0.784 (0.777-0.791) for the deep learning model, and this was significantly higher than that of the logistic regression and random forest methods and conventional ECG criteria (P < 0.001). The AUROCs for the logistic regression and random forest methods were 0.758 (0.751-0.765) and 0.716 (0.708-0.724), respectively. This study suggests that deep learning is a useful method to detect LVD and LVH from 12-lead ECGs.


Asunto(s)
Aprendizaje Profundo , Insuficiencia Cardíaca , Dilatación , Electrocardiografía/métodos , Humanos , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Masculino
13.
J Cardiol ; 79(3): 334-341, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34544652

RESUMEN

BACKGROUND: Aortic regurgitation (AR) is a common heart disease, with a relatively high prevalence of 4.9% in the Framingham Heart Study. Because the prevalence increases with advancing age, an upward shift in the age distribution may increase the burden of AR. To provide an effective screening method for AR, we developed a deep learning-based artificial intelligence algorithm for the diagnosis of significant AR using electrocardiography (ECG). METHODS: Our dataset comprised 29,859 paired data of ECG and echocardiography, including 412 AR cases, from January 2015 to December 2019. This dataset was divided into training, validation, and test datasets. We developed a multi-input neural network model, which comprised a two-dimensional convolutional neural network (2D-CNN) using raw ECG data and a fully connected deep neural network (FC-DNN) using ECG features, and compared its performance with the performances of a 2D-CNN model and other machine learning models. In addition, we used gradient-weighted class activation mapping (Grad-CAM) to identify which parts of ECG waveforms had the most effect on algorithm decision making. RESULTS: The area under the receiver operating characteristic curve of the multi-input model (0.802; 95% CI, 0.762-0.837) was significantly greater than that of the 2D-CNN model alone (0.734; 95% CI, 0.679-0.783; p<0.001) and those of other machine learning models. Grad-CAM demonstrated that the multi-input model tended to focus on the QRS complex in leads I and aVL when detecting AR. CONCLUSIONS: The multi-input deep learning model using 12-lead ECG data could detect significant AR with modest predictive value.


Asunto(s)
Insuficiencia de la Válvula Aórtica , Aprendizaje Profundo , Algoritmos , Insuficiencia de la Válvula Aórtica/diagnóstico , Inteligencia Artificial , Electrocardiografía/métodos , Humanos , Estudios Retrospectivos
15.
Int Heart J ; 62(6): 1332-1341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34853226

RESUMEN

Deep learning models can be applied to electrocardiograms (ECGs) to detect left ventricular (LV) dysfunction. We hypothesized that applying a deep learning model may improve the diagnostic accuracy of cardiologists in predicting LV dysfunction from ECGs. We acquired 37,103 paired ECG and echocardiography data records of patients who underwent echocardiography between January 2015 and December 2019. We trained a convolutional neural network to identify the data records of patients with LV dysfunction (ejection fraction < 40%) using a dataset of 23,801 ECGs. When tested on an independent set of 7,196 ECGs, we found the area under the receiver operating characteristic curve was 0.945 (95% confidence interval: 0.936-0.954). When 7 cardiologists interpreted 50 randomly selected ECGs from the test dataset of 7,196 ECGs, their accuracy for predicting LV dysfunction was 78.0% ± 6.0%. By referring to the model's output, the cardiologist accuracy improved to 88.0% ± 3.7%, which indicates that model support significantly improved the cardiologist diagnostic accuracy (P = 0.02). A sensitivity map demonstrated that the model focused on the QRS complex when detecting LV dysfunction on ECGs. We developed a deep learning model that can detect LV dysfunction on ECGs with high accuracy. Furthermore, we demonstrated that support from a deep learning model can help cardiologists to identify LV dysfunction on ECGs.


Asunto(s)
Aprendizaje Profundo , Electrocardiografía , Disfunción Ventricular Izquierda/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Cardiólogos , Sistemas de Apoyo a Decisiones Clínicas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Sístole
16.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769508

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic with a great impact on social and economic activities, as well as public health. In most patients, the symptoms of COVID-19 are a high-grade fever and a dry cough, and spontaneously resolve within ten days. However, in severe cases, COVID-19 leads to atypical bilateral interstitial pneumonia, acute respiratory distress syndrome, and systemic thromboembolism, resulting in multiple organ failure with high mortality and morbidity. SARS-CoV-2 has immune evasion mechanisms, including inhibition of interferon signaling and suppression of T cell and B cell responses. SARS-CoV-2 infection directly and indirectly causes dysregulated immune responses, platelet hyperactivation, and endothelial dysfunction, which interact with each other and are exacerbated by cardiovascular risk factors. In this review, we summarize current knowledge on the pathogenic basis of thromboinflammation and endothelial injury in COVID-19. We highlight the distinct contributions of dysregulated immune responses, platelet hyperactivation, and endothelial dysfunction to the pathogenesis of COVID-19. In addition, we discuss potential therapeutic strategies targeting these mechanisms.


Asunto(s)
COVID-19/patología , Endotelio Vascular/fisiopatología , Trombosis/etiología , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , Antivirales/uso terapéutico , Coagulación Sanguínea , COVID-19/complicaciones , COVID-19/virología , Endotelio Vascular/metabolismo , Humanos , Inmunidad Innata , Activación Plaquetaria , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Tratamiento Farmacológico de COVID-19
17.
PLoS One ; 16(8): e0255577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34351974

RESUMEN

Intravascular ultrasound (IVUS) is a diagnostic modality used during percutaneous coronary intervention. However, specialist skills are required to interpret IVUS images. To address this issue, we developed a new artificial intelligence (AI) program that categorizes vessel components, including calcification and stents, seen in IVUS images of complex lesions. When developing our AI using U-Net, IVUS images were taken from patients with angina pectoris and were manually segmented into the following categories: lumen area, medial plus plaque area, calcification, and stent. To evaluate our AI's performance, we calculated the classification accuracy of vessel components in IVUS images of vessels with clinically significantly narrowed lumina (< 4 mm2) and those with severe calcification. Additionally, we assessed the correlation between lumen areas in manually-labeled ground truth images and those in AI-predicted images, the mean intersection over union (IoU) of a test set, and the recall score for detecting stent struts in each IVUS image in which a stent was present in the test set. Among 3738 labeled images, 323 were randomly selected for use as a test set. The remaining 3415 images were used for training. The classification accuracies for vessels with significantly narrowed lumina and those with severe calcification were 0.97 and 0.98, respectively. Additionally, there was a significant correlation in the lumen area between the ground truth images and the predicted images (ρ = 0.97, R2 = 0.97, p < 0.001). However, the mean IoU of the test set was 0.66 and the recall score for detecting stent struts was 0.64. Our AI program accurately classified vessels requiring treatment and vessel components, except for stents in IVUS images of complex lesions. AI may be a powerful tool for assisting in the interpretation of IVUS imaging and could promote the popularization of IVUS-guided percutaneous coronary intervention in a clinical setting.


Asunto(s)
Algoritmos , Inteligencia Artificial , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/patología , Aprendizaje Profundo , Ultrasonografía/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador
18.
Circ J ; 86(1): 87-95, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34176867

RESUMEN

BACKGROUND: Because the early diagnosis of subclinical cardiac sarcoidosis (CS) remains difficult, we developed a deep learning algorithm to distinguish CS patients from healthy subjects using echocardiographic movies.Methods and Results:Among the patients who underwent echocardiography from January 2015 to December 2019, we chose 151 echocardiographic movies from 50 CS patients and 151 from 149 healthy subjects. We trained two 3D convolutional neural networks (3D-CNN) to identify CS patients using a dataset of 212 echocardiographic movies with and without a transfer learning method (Pretrained algorithm and Non-pretrained algorithm). On an independent set of 41 echocardiographic movies, the area under the receiver-operating characteristic curve (AUC) of the Pretrained algorithm was greater than that of Non-pretrained algorithm (0.842, 95% confidence interval (CI): 0.722-0.962 vs. 0.724, 95% CI: 0.566-0.882, P=0.253). The AUC from the interpretation of the same set of 41 echocardiographic movies by 5 cardiologists was not significantly different from that of the Pretrained algorithm (0.855, 95% CI: 0.735-0.975 vs. 0.842, 95% CI: 0.722-0.962, P=0.885). A sensitivity map demonstrated that the Pretrained algorithm focused on the area of the mitral valve. CONCLUSIONS: A 3D-CNN with a transfer learning method may be a promising tool for detecting CS using an echocardiographic movie.


Asunto(s)
Aprendizaje Profundo , Miocarditis , Sarcoidosis , Algoritmos , Ecocardiografía , Humanos , Películas Cinematográficas , Sarcoidosis/diagnóstico por imagen
19.
Int Heart J ; 61(5): 1088, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32999191

RESUMEN

An error appeared in the article entitled "Diagnosing Heart Failure from Chest X-Ray Images Using Deep Learning" by Takuya Matsumoto, Satoshi Kodera, Hiroki Shinohara, Hirotaka Ieki, Toshihiro Yamaguchi, Yasutomi Higashikuni, Arihiro Kiyosue, Kaoru Ito, Jiro Ando, Eiki Takimoto, Hiroshi Akazawa, Hiroyuki Morita, Issei Komuro (Vol. 61, No. 4, 781-786, 2020). The Figure 5on page 784 should be replaced by the following figure.

20.
Int Heart J ; 61(4): 781-786, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32684597

RESUMEN

The development of deep learning technology has enabled machines to achieve high-level accuracy in interpreting medical images. While many previous studies have examined the detection of pulmonary nodules in chest X-rays using deep learning, the application of this technology to heart failure remains rare. In this paper, we investigated the performance of a deep learning algorithm in terms of diagnosing heart failure using images obtained from chest X-rays. We used 952 chest X-ray images from a labeled database published by the National Institutes of Health. Two cardiologists verified and relabeled a total of 260 "normal" and 378 "heart failure" images, with the remainder being discarded because they had been incorrectly labeled. Data augmentation and transfer learning were used to obtain an accuracy of 82% in diagnosing heart failure using the chest X-ray images. Furthermore, heatmap imaging allowed us to visualize decisions made by the machine. Deep learning can thus help support the diagnosis of heart failure using chest X-ray images.


Asunto(s)
Aprendizaje Profundo , Insuficiencia Cardíaca/diagnóstico por imagen , Radiografía Torácica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...