Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 214(3): 107876, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35738335

RESUMEN

Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood. It is theorised that BoNTs undergo a pH-triggered conformational shift, activating the neurotoxin by priming it to form a transmembrane (TM) channel. To test this hypothesis, we combined molecular dynamics (MD) simulations and small-angle x-ray scattering (SAXS), revealing a new conformation of serotype E (BoNT/E). This conformation was exclusively observed in simulations below pH 5.5, as determined by principal component analysis (PCA), and its theoretical SAXS profile matched an experimental SAXS profile obtained at pH 4. Additionally, a localised secondary structural change was observed in MD simulations below pH 5.5, in a region previously identified as instrumental for membrane insertion for serotype A (BoNT/A). These changes were found at a critical pH value for BoNTs in vivo, and may be relevant for their therapeutic use.


Asunto(s)
Toxinas Botulínicas Tipo A , Toxinas Botulínicas , Toxinas Botulínicas Tipo A/química , Concentración de Iones de Hidrógeno , Dispersión del Ángulo Pequeño , Difracción de Rayos X
2.
J Am Soc Mass Spectrom ; 28(9): 1855-1862, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28484973

RESUMEN

Collision cross-section (CCS) measurements obtained from ion mobility spectrometry-mass spectrometry (IMS-MS) analyses often provide useful information concerning a protein's size and shape and can be complemented by modeling procedures. However, there have been some concerns about the extent to which certain proteins maintain a native-like conformation during the gas-phase analysis, especially proteins with dynamic or extended regions. Here we have measured the CCSs of a range of biomolecules including non-globular proteins and RNAs of different sequence, size, and stability. Using traveling wave IMS-MS, we show that for the proteins studied, the measured CCS deviates significantly from predicted CCS values based upon currently available structures. The results presented indicate that these proteins collapse to different extents varying on their elongated structures upon transition into the gas-phase. Comparing two RNAs of similar mass but different solution structures, we show that these biomolecules may also be susceptible to gas-phase compaction. Together, the results suggest that caution is needed when predicting structural models based on CCS data for RNAs as well as proteins with non-globular folds. Graphical Abstract ᅟ.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Proteínas/química , ARN/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Gases/química
3.
Oncoimmunology ; 6(3): e1280645, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28405505

RESUMEN

Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) is part of a system of signals involved in controlling T-cell activation. Targeting and agonizing GITR in mice promotes antitumor immunity by enhancing the function of effector T cells and inhibiting regulatory T cells. Here, we describe MEDI1873, a novel hexameric human GITR agonist comprising an IgG1 Fc domain, a coronin 1A trimerization domain and the human GITRL extracellular domain (ECD). MEDI1873 was optimized through systematic testing of different trimerization domains, aglycosylation of the GITRL ECD and comparison of different Fc isotypes. MEDI1873 exhibits oligomeric heterogeneity and superiority to an anti-GITR antibody with respect to evoking robust GITR agonism, T-cell activation and clustering of Fc gamma receptors. Further, it recapitulates, in vitro, several aspects of GITR targeting described in mice, including modulation of regulatory T-cell suppression and the ability to increase the CD8+:CD4+ T-cell ratio via antibody-dependent T-cell cytotoxicity. To support translation into a therapeutic setting, we demonstrate that MEDI1873 is a potent T-cell agonist in vivo in non-human primates, inducing marked enhancement of humoral and T-cell proliferative responses against protein antigen, and demonstrate the presence of GITR- and FoxP3-expressing infiltrating lymphocytes in a range of human tumors. Overall our data provide compelling evidence that MEDI1873 is a novel, potent GITR agonist with the ability to modulate T-cell responses, and suggest that previously described GITR biology in mice may translate to the human setting, reinforcing the potential of targeting the GITR pathway as a therapeutic approach to cancer.

4.
Proc Natl Acad Sci U S A ; 114(18): 4673-4678, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416674

RESUMEN

Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein's structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, ß2-microglobulin (ß2m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36-1.8 ms, at concentrations as low as 0.5 mg mL-1 In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation.


Asunto(s)
Anticuerpos Monoclonales/química , Factor Estimulante de Colonias de Granulocitos/química , Hidrodinámica , Agregado de Proteínas , Albúmina Sérica Bovina/química , Microglobulina beta-2/química , Animales , Bovinos , Humanos , Cinética , Estabilidad Proteica
5.
Anal Chem ; 89(4): 2361-2368, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28194941

RESUMEN

Antibodies are an important class of drugs, comprising more than half of all new FDA approvals. Therapeutic antibodies must be chemically stable both in storage and in vivo, following administration to patients. Deamidation is a major degradation pathway for all natural and therapeutic proteins circulating in blood. Here, the linkage between deamidation propensity and structural dynamics is investigated by examining two antibodies with differing specificities. While both antibodies share a canonical asparagine-glycine (NG) motif in a structural loop, this is prone to deamidation in one of the antibodies but not the other. We found that the hydrogen-exchange rate at the adjacent two amides, often the autocatalytic nucleophiles in deamidation, correlated with the rate of degradation. This previously unreported observation was confirmed upon mutation to stabilize the deamidation lability via a generally applicable orthogonal engineering strategy presented here. We anticipate that the structural insight into chemical degradation in full-length monoclonal antibodies and the high-resolution hydrogen-exchange methodology used will have broad application across biochemical study and drug discovery and development.


Asunto(s)
Amidas/metabolismo , Anticuerpos Monoclonales/metabolismo , Asparagina/metabolismo , Espectrometría de Masas/métodos , Amidas/química , Anticuerpos Monoclonales/química , Asparagina/química , Catálisis , Medición de Intercambio de Deuterio , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo
6.
MAbs ; 9(1): 104-113, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27834568

RESUMEN

Excessive transforming growth factor (TGF)-ß is associated with pro-fibrotic responses in lung disease, yet it also plays essential roles in tissue homeostasis and autoimmunity. Therefore, selective inhibition of excessive and aberrant integrin-mediated TGF-ß activation via targeting the α-v family of integrins is being pursued as a therapeutic strategy for chronic lung diseases, to mitigate any potential safety concerns with global TGF-ß inhibition. In this work, we reveal a novel mechanism of inhibiting TGF-ß activation utilized by an αvß8 targeting antibody, 37E1B5. This antibody blocks TGF-ß activation while not inhibiting cell adhesion. We show that an N-linked complex-type Fab glycan in H-CDR2 of 37E1B5 is directly involved in the inhibition of latent TGF-ß activation. Removal of the Fab N-glycosylation site by single amino acid substitution, or removal of N-linked glycans by enzymatic digestion, drastically reduced the antibody's ability to inhibit latency-associated peptide (LAP) and αvß8 association, and TGF-ß activation in an αvß8-mediated TGF-ß signaling reporter assay. Our results indicate a non-competitive, allosteric inhibition of 37E1B5 on αvß8-mediated TGF-ß activation. This unique, H-CDR2 glycan-mediated mechanism may account for the potent but tolerable TGF-b activation inhibition and lack of an effect on cellular adhesion by the antibody.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Regiones Determinantes de Complementariedad/química , Integrinas/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacocinética , Regiones Determinantes de Complementariedad/inmunología , Glicosilación , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Ratones , Polisacáridos/química , Procesamiento Proteico-Postraduccional
7.
Sci Rep ; 6: 38644, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27995962

RESUMEN

Uncontrolled self-association is a major challenge in the exploitation of proteins as therapeutics. Here we describe the development of a structural proteomics approach to identify the amino acids responsible for aberrant self-association of monoclonal antibodies and the design of a variant with reduced aggregation and increased serum persistence in vivo. We show that the human monoclonal antibody, MEDI1912, selected against nerve growth factor binds with picomolar affinity, but undergoes reversible self-association and has a poor pharmacokinetic profile in both rat and cynomolgus monkeys. Using hydrogen/deuterium exchange and cross-linking-mass spectrometry we map the residues responsible for self-association of MEDI1912 and show that disruption of the self-interaction interface by three mutations enhances its biophysical properties and serum persistence, whilst maintaining high affinity and potency. Immunohistochemistry suggests that this is achieved via reduction of non-specific tissue binding. The strategy developed represents a powerful and generic approach to improve the properties of therapeutic proteins.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Ingeniería de Proteínas/métodos , Animales , Anticuerpos Monoclonales/farmacocinética , Fenómenos Biofísicos , Cromatografía en Gel , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Hidrógeno , Ratones , Mutación/genética , Especificidad de Órganos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Ratas , Espectrometría de Masa por Ionización de Electrospray , Propiedades de Superficie , Viscosidad
8.
Angew Chem Int Ed Engl ; 54(50): 15156-9, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26482340

RESUMEN

Immunoglobulin G (IgG) monoclonal antibodies (mAbs) are a major class of medicines, with high specificity and affinity towards targets spanning many disease areas. The antibody Fc (fragment crystallizable) region is a vital component of existing antibody therapeutics, as well as many next generation biologic medicines. Thermodynamic stability is a critical property for the development of stable and effective therapeutic proteins. Herein, a combination of ion-mobility mass spectrometry (IM-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) approaches have been used to inform on the global and local conformation and dynamics of engineered IgG Fc variants with reduced thermodynamic stability. The changes in conformation and dynamics have been correlated with their thermodynamic stability to better understand the destabilising effect of functional IgG Fc mutations and to inform engineering of future therapeutic proteins.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoglobulina G/química , Termodinámica , Medición de Intercambio de Deuterio , Humanos , Espectrometría de Masas , Conformación Proteica
9.
Nat Commun ; 6: 8327, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26365875

RESUMEN

In response to infections and irritants, the respiratory epithelium releases the alarmin interleukin (IL)-33 to elicit a rapid immune response. However, little is known about the regulation of IL-33 following its release. Here we report that the biological activity of IL-33 at its receptor ST2 is rapidly terminated in the extracellular environment by the formation of two disulphide bridges, resulting in an extensive conformational change that disrupts the ST2 binding site. Both reduced (active) and disulphide bonded (inactive) forms of IL-33 can be detected in lung lavage samples from mice challenged with Alternaria extract and in sputum from patients with moderate-severe asthma. We propose that this mechanism for the rapid inactivation of secreted IL-33 constitutes a 'molecular clock' that limits the range and duration of ST2-dependent immunological responses to airway stimuli. Other IL-1 family members are also susceptible to cysteine oxidation changes that could regulate their activity and systemic exposure through a similar mechanism.


Asunto(s)
Asma/inmunología , Interleucina-33/metabolismo , Receptores de Superficie Celular/inmunología , Receptores de Interleucina/inmunología , Animales , Asma/genética , Asma/metabolismo , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33/genética , Interleucina-33/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Oxidación-Reducción , Receptores de Superficie Celular/genética , Receptores de Interleucina/genética
10.
Nat Commun ; 6: 7877, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26203596

RESUMEN

Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called 'DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a 'DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-ß4 loop and 'molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1.


Asunto(s)
Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Escherichia coli , Humanos , Imidazoles , Cinética , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Piridazinas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores
11.
Mol Cell ; 33(4): 472-82, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19250908

RESUMEN

Ca(2+) elevations are fundamental to cardiac physiology-stimulating contraction and regulating the gene transcription that underlies hypertrophy. How Ca(2+) specifically controls gene transcription on the background of the rhythmic Ca(2+) increases required for contraction is not fully understood. Here we identify a hypertrophy-signaling module in cardiac myocytes that explains how Ca(2+) discretely regulates myocyte hypertrophy and contraction. We show that endothelin-1 (ET-1) stimulates InsP(3)-induced Ca(2+) release (IICR) from perinuclear InsP(3)Rs, causing an elevation in nuclear Ca(2+). Significantly, we show that IICR, but not global Ca(2+) elevations associated with myocyte contraction, couple to the calcineurin (CnA)/NFAT pathway to induce hypertrophy. Moreover, we found that activation of the CnA/NFAT pathway and hypertrophy by isoproterenol and BayK8644, which enhance global Ca(2+) fluxes, was also dependent on IICR and nuclear Ca(2+) elevations. The activation of IICR by these activity-enhancing mediators was explained by their ability to stimulate secretion of autocrine/paracrine ET-1.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Endotelina-1/farmacología , Inositol 1,4,5-Trifosfato/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcineurina/metabolismo , Aumento de la Célula , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Ratas , Porcinos , Transfección
12.
J Cell Sci ; 119(Pt 19): 3915-25, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16988026

RESUMEN

Atrial cardiomyocytes make an important contribution to the refilling of ventricles with blood, which enhances the subsequent ejection of blood from the heart. The dependence of cardiac function on the contribution of atria becomes increasingly important with age and exercise. We know much less about the calcium signals that link electrical depolarisation to contraction within atrial myocytes in comparison with ventricular myocytes. Nevertheless, recent work has shed new light on calcium signalling in atrial cells. At an ultrastructural level, atrial and ventricular myocytes have many similarities. However, a few key structural differences, in particular the lack of transverse tubules (;T-tubules') in atrial myocytes, make these two cell types display vastly different calcium patterns in response to depolarisation. The lack of T-tubules in atrial myocytes means that depolarisation provokes calcium signals that largely originate around the periphery of the cells. To engage the contractile machinery, the calcium signal must propagate centripetally deeper into the cells. This inward movement of calcium is ultimately controlled by hormones that can promote or decrease calcium release within the myocytes. Enhanced centripetal movement of calcium in atrial myocytes leads to increased contraction and a more substantial contribution to blood pumping. The calcium signalling paradigm within atrial cells applies to other cardiac cell types that also do not express T-tubules, such as neonatal ventricular myocytes, and Purkinje cells that aid in the spread of electrical depolarisation. Furthermore, during heart failure ventricular myocytes progressively lose their regular T-tubule expression, and their pattern of response resembles that of atrial cells.


Asunto(s)
Calcio/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Animales , Función Atrial , Electrofisiología , Corazón/crecimiento & desarrollo , Insuficiencia Cardíaca/metabolismo , Humanos , Mamíferos , Modelos Biológicos , Sistemas de Mensajero Secundario , Transducción de Señal , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA