Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Physiol ; 602(9): 2019-2045, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488688

RESUMEN

Activation of the cAMP pathway is one of the common mechanisms underlying long-term potentiation (LTP). In the Drosophila mushroom body, simultaneous activation of odour-coding Kenyon cells (KCs) and reinforcement-coding dopaminergic neurons activates adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity underlying olfactory associative learning. However, learning induces long-term depression (LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of transmission. Here, we developed a system to electrophysiologically monitor both short-term and long-term synaptic plasticity at KC output synapses and demonstrated that they are indeed an exception in which activation of the cAMP-protein kinase A pathway induces LTD. Contrary to the prevailing model, our cAMP imaging found no evidence for synergistic action of dopamine and KC activity on cAMP synthesis. Furthermore, we found that forskolin-induced cAMP increase alone was insufficient for plasticity induction; it additionally required simultaneous KC activation to replicate the presynaptic LTD induced by pairing with dopamine. On the other hand, activation of the cGMP pathway paired with KC activation induced slowly developing LTP, proving antagonistic actions of the two second-messenger pathways predicted by behavioural study. Finally, KC subtype-specific interrogation of synapses revealed that different KC subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering the unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes the methods to address physiological mechanisms of synaptic plasticity in this important model. KEY POINTS: Although presynaptic cAMP increase generally facilitates synapses, olfactory associative learning in Drosophila, which depends on dopamine and cAMP signalling genes, induces long-term depression (LTD) at the mushroom body output synapses. By combining electrophysiology, pharmacology and optogenetics, we directly demonstrate that these synapses are an exception where activation of the cAMP-protein kinase A pathway leads to presynaptic LTD. Dopamine- or forskolin-induced cAMP increase alone is not sufficient for LTD induction; neuronal activity, which has been believed to trigger cAMP synthesis in synergy with dopamine input, is required in the downstream pathway of cAMP. In contrast to cAMP, activation of the cGMP pathway paired with neuronal activity induces presynaptic long-term potentiation, which explains behaviourally observed opposing actions of transmitters co-released by dopaminergic neurons. Our work not only revises the role of cAMP in synaptic plasticity, but also provides essential methods to address physiological mechanisms of synaptic plasticity in this important model system.


Asunto(s)
AMP Cíclico , Cuerpos Pedunculados , Plasticidad Neuronal , Animales , Cuerpos Pedunculados/fisiología , AMP Cíclico/metabolismo , Plasticidad Neuronal/fisiología , Dopamina , Potenciación a Largo Plazo/fisiología , Drosophila melanogaster/fisiología , GMP Cíclico/metabolismo , Sinapsis/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
2.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37808762

RESUMEN

Activation of the cAMP pathway is one of the common mechanisms underlying long-term potentiation (LTP). In the Drosophila mushroom body, simultaneous activation of odor-coding Kenyon cells (KCs) and reinforcement-coding dopaminergic neurons activates adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity underlying olfactory associative learning. However, learning induces long-term depression (LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of transmission. Here, we develop a system to electrophysiologically monitor both short-term and long-term synaptic plasticity at KC output synapses and demonstrate that they are indeed an exception where activation of the cAMP/protein kinase A pathway induces LTD. Contrary to the prevailing model, our cAMP imaging finds no evidence for synergistic action of dopamine and KC activity on cAMP synthesis. Furthermore, we find that forskolin-induced cAMP increase alone is insufficient for plasticity induction; it additionally requires simultaneous KC activation to replicate the presynaptic LTD induced by pairing with dopamine. On the other hand, activation of the cGMP pathway paired with KC activation induces slowly developing LTP, proving antagonistic actions of the two second-messenger pathways predicted by behavioral study. Finally, KC subtype-specific interrogation of synapses reveals that different KC subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering the unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes the methods to address physiological mechanisms of synaptic plasticity in this important model.

3.
eNeuro ; 10(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37848287

RESUMEN

The Drosophila mushroom body (MB) is an important model system for studying the synaptic mechanisms of associative learning. In this system, coincidence of odor-evoked calcium influx and dopaminergic input in the presynaptic terminals of Kenyon cells (KCs), the principal neurons of the MB, triggers long-term depression (LTD), which plays a critical role in olfactory learning. However, it is controversial whether such synaptic plasticity is accompanied by a corresponding decrease in odor-evoked calcium activity in the KC presynaptic terminals. Here, we address this question by inducing LTD by pairing odor presentation with optogenetic activation of dopaminergic neurons (DANs). This allows us to rigorously compare the changes at the presynaptic and postsynaptic sites in the same conditions. By imaging presynaptic acetylcholine release in the condition where LTD is reliably observed in the postsynaptic calcium signals, we show that neurotransmitter release from KCs is depressed selectively in the MB compartments innervated by activated DANs, demonstrating the presynaptic nature of LTD. However, total odor-evoked calcium activity of the KC axon bundles does not show concurrent depression. We further conduct calcium imaging in individual presynaptic boutons and uncover the highly heterogeneous nature of calcium plasticity. Namely, only a subset of boutons, which are strongly activated by associated odors, undergo calcium activity depression, while weakly responding boutons show potentiation. Thus, our results suggest an unexpected nonlinear relationship between presynaptic calcium influx and the results of plasticity, challenging the simple view of cooperative actions of presynaptic calcium and dopaminergic input.


Asunto(s)
Drosophila , Terminales Presinápticos , Animales , Drosophila/fisiología , Terminales Presinápticos/fisiología , Cuerpos Pedunculados/fisiología , Calcio , Dopamina , Neuronas Dopaminérgicas , Plasticidad Neuronal
4.
Elife ; 122023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37721371

RESUMEN

How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign a valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After formation of appetitive memory, UpWiNs acquire enhanced response to reward-predicting odors as the response of the inhibitory presynaptic MBON undergoes depression. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was terminated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.


Asunto(s)
Aprendizaje , Viento , Animales , Drosophila/fisiología , Olfato/fisiología , Neuronas/fisiología , Cuerpos Pedunculados/fisiología , Drosophila melanogaster/fisiología
5.
Elife ; 122023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692262

RESUMEN

Dopaminergic neurons with distinct projection patterns and physiological properties compose memory subsystems in a brain. However, it is poorly understood whether or how they interact during complex learning. Here, we identify a feedforward circuit formed between dopamine subsystems and show that it is essential for second-order conditioning, an ethologically important form of higher-order associative learning. The Drosophila mushroom body comprises a series of dopaminergic compartments, each of which exhibits distinct memory dynamics. We find that a slow and stable memory compartment can serve as an effective 'teacher' by instructing other faster and transient memory compartments via a single key interneuron, which we identify by connectome analysis and neurotransmitter prediction. This excitatory interneuron acquires enhanced response to reward-predicting odor after first-order conditioning and, upon activation, evokes dopamine release in the 'student' compartments. These hierarchical connections between dopamine subsystems explain distinct properties of first- and second-order memory long known by behavioral psychologists.


Asunto(s)
Dopamina , Drosophila , Animales , Drosophila/fisiología , Aprendizaje , Encéfalo , Odorantes , Neuronas Dopaminérgicas/fisiología , Cuerpos Pedunculados/fisiología , Drosophila melanogaster/fisiología , Olfato/fisiología
6.
Curr Biol ; 32(20): 4438-4450.e5, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36130601

RESUMEN

Effective and stimulus-specific learning is essential for animals' survival. Two major mechanisms are known to aid stimulus specificity of associative learning. One is accurate stimulus-specific representations in neurons. The second is a limited effective temporal window for the reinforcing signals to induce neuromodulation after sensory stimuli. However, these mechanisms are often imperfect in preventing unspecific associations; different sensory stimuli can be represented by overlapping populations of neurons, and more importantly, the reinforcing signals alone can induce neuromodulation even without coincident sensory-evoked neuronal activity. Here, we report a crucial neuromodulatory mechanism that counteracts both limitations and is thereby essential for stimulus specificity of learning. In Drosophila, olfactory signals are sparsely represented by cholinergic Kenyon cells (KCs), which receive dopaminergic reinforcing input. We find that KCs have numerous axo-axonic connections mediated by the muscarinic type-B receptor (mAChR-B). By using functional imaging and optogenetic approaches, we show that these axo-axonic connections suppress both odor-evoked calcium responses and dopamine-evoked cAMP signals in neighboring KCs. Strikingly, behavior experiments demonstrate that mAChR-B knockdown in KCs impairs olfactory learning by inducing undesired changes to the valence of an odor that was not associated with the reinforcer. Thus, this local neuromodulation acts in concert with sparse sensory representations and global dopaminergic modulation to achieve effective and accurate memory formation.


Asunto(s)
Drosophila , Cuerpos Pedunculados , Animales , Drosophila/fisiología , Cuerpos Pedunculados/fisiología , Dopamina , Calcio , Olfato/fisiología , Odorantes , Colinérgicos , Drosophila melanogaster/fisiología
7.
Neurosci Res ; 129: 8-16, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28483586

RESUMEN

Nervous systems have evolved to translate external stimuli into appropriate behavioral responses. In an ever-changing environment, flexible adjustment of behavioral choice by experience-dependent learning is essential for the animal's survival. Associative learning is a simple form of learning that is widely observed from worms to humans. To understand the whole process of learning, we need to know how sensory information is represented and transformed in the brain, how it is changed by experience, and how the changes are reflected on motor output. To tackle these questions, studying numerically simple invertebrate nervous systems has a great advantage. In this review, I will feature the Pavlovian olfactory learning in the fruit fly, Drosophila melanogaster. The mushroom body is a key brain area for the olfactory learning in this organism. Recently, comprehensive anatomical information and the genetic tool sets were made available for the mushroom body circuit. This greatly accelerated the physiological understanding of the learning process. One of the key findings was dopamine-induced long-term synaptic plasticity that can alter the representations of stimulus valence. I will mostly focus on the new studies within these few years and discuss what we can possibly learn about the vertebrate systems from this model organism.


Asunto(s)
Aprendizaje por Asociación/fisiología , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Potenciales de Acción , Animales , Dopamina/fisiología , Drosophila melanogaster , Humanos , Modelos Neurológicos , Odorantes , Olfato/fisiología
8.
Elife ; 62017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718765

RESUMEN

Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB's α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall.


Asunto(s)
Conectoma , Drosophila/anatomía & histología , Drosophila/fisiología , Cuerpos Pedunculados/anatomía & histología , Cuerpos Pedunculados/fisiología , Animales , Aprendizaje , Memoria
9.
Elife ; 52016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27083044

RESUMEN

Previously, we demonstrated that visual and olfactory associative memories of Drosophila share mushroom body (MB) circuits (Vogt et al., 2014). Unlike for odor representation, the MB circuit for visual information has not been characterized. Here, we show that a small subset of MB Kenyon cells (KCs) selectively responds to visual but not olfactory stimulation. The dendrites of these atypical KCs form a ventral accessory calyx (vAC), distinct from the main calyx that receives olfactory input. We identified two types of visual projection neurons (VPNs) directly connecting the optic lobes and the vAC. Strikingly, these VPNs are differentially required for visual memories of color and brightness. The segregation of visual and olfactory domains in the MB allows independent processing of distinct sensory memories and may be a conserved form of sensory representations among insects.


Asunto(s)
Drosophila/fisiología , Cuerpos Pedunculados/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Animales , Drosophila/anatomía & histología , Memoria , Cuerpos Pedunculados/anatomía & histología , Vías Nerviosas/anatomía & histología , Neuronas/citología , Percepción Olfatoria , Lóbulo Óptico de Animales no Mamíferos/anatomía & histología , Percepción Visual
10.
Neuron ; 88(5): 985-998, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26637800

RESUMEN

Although associative learning has been localized to specific brain areas in many animals, identifying the underlying synaptic processes in vivo has been difficult. Here, we provide the first demonstration of long-term synaptic plasticity at the output site of the Drosophila mushroom body. Pairing an odor with activation of specific dopamine neurons induces both learning and odor-specific synaptic depression. The plasticity induction strictly depends on the temporal order of the two stimuli, replicating the logical requirement for associative learning. Furthermore, we reveal that dopamine action is confined to and distinct across different anatomical compartments of the mushroom body lobes. Finally, we find that overlap between sparse representations of different odors defines both stimulus specificity of the plasticity and generalizability of associative memories across odors. Thus, the plasticity we find here not only manifests important features of associative learning but also provides general insights into how a sparse sensory code is read out.


Asunto(s)
Reacción de Prevención/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Animales Modificados Genéticamente , Calcio , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Odorantes , Optogenética , Técnicas de Placa-Clamp , Estimulación Luminosa , Células Receptoras Sensoriales/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Nature ; 526(7572): 258-62, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26416731

RESUMEN

Although all sensory circuits ascend to higher brain areas where stimuli are represented in sparse, stimulus-specific activity patterns, relatively little is known about sensory coding on the descending side of neural circuits, as a network converges. In insects, mushroom bodies have been an important model system for studying sparse coding in the olfactory system, where this format is important for accurate memory formation. In Drosophila, it has recently been shown that the 2,000 Kenyon cells of the mushroom body converge onto a population of only 34 mushroom body output neurons (MBONs), which fall into 21 anatomically distinct cell types. Here we provide the first, to our knowledge, comprehensive view of olfactory representations at the fourth layer of the circuit, where we find a clear transition in the principles of sensory coding. We show that MBON tuning curves are highly correlated with one another. This is in sharp contrast to the process of progressive decorrelation of tuning in the earlier layers of the circuit. Instead, at the population level, odour representations are reformatted so that positive and negative correlations arise between representations of different odours. At the single-cell level, we show that uniquely identifiable MBONs display profoundly different tuning across different animals, but that tuning of the same neuron across the two hemispheres of an individual fly was nearly identical. Thus, individualized coordination of tuning arises at this level of the olfactory circuit. Furthermore, we find that this individualization is an active process that requires a learning-related gene, rutabaga. Ultimately, neural circuits have to flexibly map highly stimulus-specific information in sparse layers onto a limited number of different motor outputs. The reformatting of sensory representations we observe here may mark the beginning of this sensory-motor transition in the olfactory system.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Percepción Olfatoria/fisiología , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Aprendizaje/fisiología , Masculino , Mutación/genética , Neuronas/clasificación , Vías Olfatorias/fisiología , Desempeño Psicomotor
12.
Neuron ; 86(2): 343-5, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25905804

RESUMEN

Olfactory memories can be very good-your mother's baking-or very bad-your father's cooking. We go through life forming these different associations with the smells we encounter. But what makes one association pleasant and another repulsive? Work in deep areas of the Drosophila brain has revealed the beginnings of an answer, as reported in this issue of Neuron by Owald et al. (2015).


Asunto(s)
Conducta Apetitiva/fisiología , Neuronas Dopaminérgicas/fisiología , Drosophila/fisiología , Cuerpos Pedunculados/inervación , Olfato/fisiología , Animales
13.
Biochem Biophys Res Commun ; 399(3): 341-6, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20655880

RESUMEN

Voltage-sensor domains (VSDs) in voltage-gated ion channels are thought to regulate the probability that a channel adopts an open conformation by moving vertically in the lipid bilayer. Here we characterized the movement of the VSDs of the prokaryotic voltage-gated sodium channel, NaChBac. Substitution of residue T110, which is located on the extracellular side of the fourth transmembrane helix of the VSD, by cysteine resulted in the formation of a disulfide bond between adjacent subunits in the channel. Our results suggest that T110 residues in VSDs of adjacent subunits can come into close proximity, implying that the VSDs can move laterally in the membrane and constitute a mechanism that regulates channel activity.


Asunto(s)
Proteínas Bacterianas/química , Canales de Sodio/química , Proteínas Bacterianas/genética , Línea Celular , Cisteína/química , Humanos , Mutación , Oxidación-Reducción , Multimerización de Proteína , Estructura Secundaria de Proteína , Canales de Sodio/genética , Zinc/química
14.
Eur J Neurosci ; 24(7): 1955-66, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17040476

RESUMEN

Pregnenolone sulfate (PREGS) is an endogenous neurosteroid widely released from neurons in the brain, and is thought to play a memory-enhancing role. At excitatory synapses PREGS facilitates transmitter release, but the underlying mechanism is not known. We addressed this issue at the calyx of Held in rat brainstem slices, where direct whole-cell recordings from giant nerve terminals are feasible. PREGS potentiated nerve-evoked excitatory postsynaptic currents (EPSCs) without affecting the amplitude of miniature EPSCs, suggesting that its site of action is presynaptic. In whole-cell recordings from calyceal nerve terminals, PREGS facilitated Ca2+ currents, by accelerating their activation kinetics and shifting the half-activation voltage toward negative potentials. PREGS had no effect on presynaptic K+ currents, resting conductance or action potential waveforms. In simultaneous pre- and postsynaptic recordings, PREGS did not change the relationship between presynaptic Ca2+ influx and EPSCs, suggesting that exocytotic machinery downstream of Ca2+ influx is not involved in its effect. PREGS facilitated Ba2+ currents recorded from nerve terminals and also from HEK 293 cells expressed with recombinant N- or P/Q-type Ca2+ channels, suggesting that PREGS-induced facilitation of voltage-gated Ca2+ channels (VGCCs) is neither Ca2+ dependent nor VGCC-type specific. The PREGS-induced VGCC facilitation was blocked by the PREGS scavenger (2-hydroxypropyl)-beta-cyclodextrin applied from outside, but not from inside, of nerve terminals. We conclude that PREGS facilitates VGCCs in presynaptic terminals by acting from outside, thereby enhancing transmitter release. We propose that PREGS may directly modulate VGCCs acting on their extracellular domain.


Asunto(s)
Tronco Encefálico/citología , Calcio/metabolismo , Ácido Glutámico/metabolismo , Pregnenolona/farmacología , Terminales Presinápticos/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Animales Recién Nacidos , Canales de Calcio/clasificación , Canales de Calcio/genética , Canales de Calcio/metabolismo , Línea Celular , Colforsina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Humanos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Ésteres del Forbol/farmacología , Conejos , Ratas , Ratas Wistar , Factores de Tiempo , Transfección/métodos
15.
Science ; 307(5706): 124-7, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15637282

RESUMEN

Molecular dependence of vesicular endocytosis was investigated with capacitance measurements at the calyx of Held terminal in brainstem slices. Intraterminal loading of botulinum toxin E revealed that the rapid capacitance transient implicated as "kiss-and-run" was unrelated to transmitter release. The release-related capacitance change decayed with an endocytotic time constant of 10 to 25 seconds, depending on the magnitude of exocytosis. Presynaptic loading of the nonhydrolyzable guanosine 5'-triphosphate (GTP) analog GTPgS or dynamin-1 proline-rich domain peptide abolished endocytosis. These compounds had no immediate effect on exocytosis, but caused a use-dependent rundown of exocytosis. Thus, the guanosine triphosphatase dynamin-1 is indispensable for vesicle endocytosis at this fast central nervous system (CNS) synapse.


Asunto(s)
Tronco Encefálico/metabolismo , Dinamina I/fisiología , Endocitosis , Guanosina Difosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Sinapsis/fisiología , Vesículas Sinápticas/metabolismo , Animales , Toxinas Botulínicas/metabolismo , Calcio/metabolismo , Dinamina I/farmacología , Capacidad Eléctrica , Potenciales Postsinápticos Excitadores , Exocitosis , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Guanosina Difosfato/farmacología , Hidrólisis , Técnicas In Vitro , Técnicas de Placa-Clamp , Fragmentos de Péptidos/farmacología , Ratas , Ratas Wistar , Transmisión Sináptica , Tionucleótidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...