Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bull Entomol Res ; 114(1): 149-158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38268111

RESUMEN

Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), the cactus moth, is native to South America with a widespread distribution in Argentina. The larvae consume the interior of Opuntia spp. (Cactaceae) plants. The moth was used as a biocontrol agent against invasive non-native Opuntia spp. in many countries around the world. The cactus moth arrived unintentionally in Florida, USA, expanded its range and threatened Opuntia-based agriculture and natural ecosystems in southern North America. The insect is also a pest of cultivated O. ficus-indica L. in Argentina. An endemic South American parasitoid, Goniozus legneri Gordth (Hymenoptera: Bethylidae), is used in inundative biological control programmes against lepidopteran pests. The goal of this work was to evaluate G. legneri as a biocontrol agent to be used in inundative releases against C. cactorum. Mortality of C. cactorum by G. legneri was assessed at different spatial scales, as well as the interactions with Apanteles opuntiarum Martínez & Berta (Hymenoptera: Braconidae), a common Argentine natural enemy of C. cactorum. The ability of G. legneri to paralyse, parasitise and kill C. cactorum was confirmed. The paralysis inflicted on C. cactorum larvae reduced larval damage to the plants by 85%. Using two parasitoid species increased the mortality of C. cactorum larvae, but it was highly dependent on the order of their arrival. The combined mortality caused by both parasitoids was higher than a single one, in particular when G. legneri arrived first (56 ± 1%), suggesting asymmetric competition due to the preference of G. legneri attacking previously parasitised larvae. Goniozus legneri has potential as an inundative biocontrol agent of C. cactorum, but its interaction with the classical biocontrol agent A. opuntiarum needs to be considered.


Asunto(s)
Himenópteros , Mariposas Nocturnas , Opuntia , Animales , Ecosistema , Larva , Control Biológico de Vectores
2.
Sci Rep ; 11(1): 13377, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183698

RESUMEN

When two or more parasitoid species, particularly candidates for biocontrol, share the same target in the same temporal window, a complex of behaviors can occur among them. We studied the type of interactions (competition and intraguild predation) that existed between the nymphal parasitoids Anagyrus cachamai and A. lapachosus (Hymenoptera: Encyrtidae), two candidate neoclassical biocontrol agents against the Puerto Rican cactus pest mealybug, Hypogeococcus sp. (Hemiptera: Pseudococcidae). The surrogate native congener host in Argentina, the cactus mealybug Hypogeococcus sp., was studied to predict which species should be released; in the case that both should be released, in which order, and their potential impact on host suppression. In the laboratory we conducted experiments where different densities of the host mealybug were exposed to naive females of A. cachamai and A. lapachosus sequentially in both directions. Experiments were analyzed by combining a series of competitive behavioral and functional response models. A fully Bayesian approach was used to select the best explaining models and calculate their parameters. Intraguild predation existed between A. cachamai, the species that had the greatest ability to exploit the resource, and A. lapachosus, the strongest species in the interference competition. The role that intraguild predation played in suppression of Hypogeococcus sp. indicated that a multiple release strategy for the two biocontrol agents would produce better control than a single release; as for the release order, A. lapachosus should be released first.


Asunto(s)
Cactaceae/fisiología , Hemípteros/fisiología , Interacciones Huésped-Parásitos/fisiología , Conducta Predatoria/fisiología , Animales , Argentina , Teorema de Bayes , Dípteros/fisiología , Ninfa/fisiología , Control Biológico de Vectores/métodos , Puerto Rico , Especificidad de la Especie , Avispas/fisiología
3.
Evol Appl ; 14(2): 566-576, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33664795

RESUMEN

As part of sterile insect technique (SIT) programs, irradiation can effectively induce sterility in insects by damaging germline genomic DNA. However, irradiation also induces other off-target side effects that reduce the quality and performance of sterilized males, including the formation of damaging free radicals that can reduce sterile male performance. Thus, treatments that reduce off-target effects of irradiation on male performance while maintaining sterility can improve the feasibility and economy of SIT programs. We previously found that inducing a form of rapid, beneficial plasticity with a 1-hr anoxic-conditioning period (physiological conditioning hormesis) prior to and during irradiation improves male field performance in the laboratory while maintaining sterility in males of the cactus moth, Cactoblastis cactorum. Here, we extend this work by testing the extent to which this beneficial plasticity may improve male field performance and longevity in the field. Based on capture rates after a series of mark release-recapture experiments, we found that anoxia-conditioned irradiated moths were active in the field longer than their irradiated counterparts. In addition, anoxia-conditioned moths were captured in traps that were farther away from the release site than unconditioned moths, suggesting greater dispersal. These data confirmed that beneficial plasticity induced by anoxia hormesis prior to irradiation led to lower postirradiation damage and increased flight performance and recapture duration under field conditions. We recommend greater consideration of beneficial plasticity responses in biological control programs and specifically the implementation of anoxia-conditioning treatments applied prior to irradiation in area-wide integrated pest management programs that use SIT.

4.
Ecol Evol ; 10(19): 10463-10480, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33072273

RESUMEN

Cryptic taxa have often been observed in the form of host-associated species that diverged as the result of adaptation to alternate host plants. Untangling cryptic diversity in species complexes that encompass invasive species is a mandatory task for pest management. Moreover, investigating the evolutionary history of a species complex may help to understand the drivers of their diversification. The mealybug Hypogeococcus pungens was believed to be a polyphagous species from South America and has been reported as a pest devastating native cacti in Puerto Rico, also threatening cactus diversity in the Caribbean and North America. There is neither certainty about the identity of the pest nor the source population from South America. Recent studies pointed to substantial genetic differentiation among local populations, suggesting that H. pungens is a species complex. In this study, we used a combination of genome-wide SNPs and mtDNA variation to investigate species diversity within H. pungens sensu lato to establish host plant ranges of each one of the putative members of the complex, to evaluate whether the pattern of host plant association drove diversification in the species complex, and to determine the source population of the Puerto Rican cactus pest. Our results suggested that H. pungens comprises at least five different species, each one strongly associated with specific host plants. We also established that the Puerto Rican cactus pest derives from southeastern Brazilian mealybugs. This is an important achievement because it will help to design reliable strategies for biological control using natural enemies of the pest from its native range.

5.
Environ Entomol ; 48(2): 343-350, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30753472

RESUMEN

Sunn hemp, Crotalaria juncea L., is a warm-season legume that can be planted in rotation to cash crops to add nitrogen and organic matter to the soils, for weed growth prevention, and to suppress nematode populations. Sunn hemp flowers also provide nectar and pollen for pollinators and enhance biological control by furnishing habitat for natural enemies. Experiments were conducted in Northern and North Central Florida to evaluate bee populations that visited flowers within mixed plots of sunn hemp and sorghum-sudangrass and plots of two sunn hemp germplasm lines. Collections of bees that visited 'AU Golden' and Tillage Sunn flowers indicated that Xylocopa virginica (L.) (Hymenoptera: Apidae), Xylocopa micans Lepeletier (Hymenoptera: Apidae), Megachile sculpturalis Smith (Hymenoptera: Megachilidae), Megachile mendica (Cresson) (Hymenoptera: Megachilidae), and Megachile georgica Cresson (Hymenoptera: Megachilidae) were present in large numbers in May through July and then again in October. Although Tillage Sunn seeds planted in March flowered in May, percent bloom and number of bee visits were low. Compared with short day sunn hemp cultivars, 'AU Golden' plants produced flowers early in the season to provide food and habitat for pollinators and have the potential to produce an abundant seed crop in Northern and North Central Florida.


Asunto(s)
Abejas , Fabaceae , Polinización , Animales , Florida
6.
J Econ Entomol ; 107(1): 185-97, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24665701

RESUMEN

As part of sterile insect technique (SIT) programs, irradiation can effectively induce sterility in insects by damaging genomic DNA. However, irradiation also induces other off-target side effects that reduce the quality and performance of sterilized males. Thus, treatments that reduce off-target effects of irradiation on male performance while maintaining sterility can improve the feasibility and economy of SIT programs. Exposure to ionizing radiation induces the formation of damaging free radicals in biological systems that may reduce sterile male performance. Here, we test whether exposure to an anoxic environment for 1 h before and during irradiation improves male performance, while maintaining sterility in males of the cactus moth, Cactoblastis cactorum (Berg). We show that exposure to 1 h of anoxia increases the moth's antioxidant capacity and that irradiation in anoxia after 1 h of anoxic conditioning decreases irradiation-induced oxidative damage to the moth's lipids and proteins. Anoxia treatment that reduced oxidative damage after irradiation also produced moths with greater flight performance, mating success, and longevity, while maintaining F1 male sterility at acceptable levels for SIT. We conclude that anoxia pretreatment followed by irradiation in anoxia is an efficient way to improve the quality of irradiated moths and perhaps lower the number of moths needed for release SIT moth operations.


Asunto(s)
Hipoxia , Mariposas Nocturnas/efectos de la radiación , Control Biológico de Vectores , Animales , Antioxidantes/metabolismo , Masculino , Mariposas Nocturnas/metabolismo , Oxidación-Reducción
7.
Environ Entomol ; 37(5): 1291-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19036209

RESUMEN

Environmental conditions during egg and larval development may influence the dispersal ability of insect pests, thus requiring seasonal adjustment of control strategies. We studied the longest single flight, total distance flown, and the number of flights initiated by wild Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) to determine whether the flight performance of overwintered cactus moths with a prolonged feeding phase during development differs from nonoverwintered cactus moths. Pupae of field-collected and laboratory-reared moths were transported together from the United States to Switzerland, and flight mills were used to characterize the flight capacity of 24- to 48-h-old adults during their most active period of the diel cycle. The lack of seasonal variation in flight performance of those moths that developed under controlled environment but were fed with field-collected Opuntia cacti showed that seasonal changes in host plant quality did not affect flight. This consistent flight performance in the mass-reared laboratory population throughout the year is beneficial for sterile insect technique programs, which aim to limit the dispersal of this pest. For field-collected C. cactorum, the larger overwintered females performed similarly to nonoverwintered females, indicating that longer feeding time at lower temperature increases body size but does not influence female flight capacity. Young mated females had a similar flight capacity to unmated ones, suggesting that gravid females may play an important role in invading new habitats. For males, overwintering increased the proportion of long-distance flyers, suggesting that they are well-adapted to locate the more sparsely dispersed females in the spring.


Asunto(s)
Vuelo Animal , Mariposas Nocturnas/fisiología , Estaciones del Año , Factores de Edad , Animales , Tamaño Corporal , Femenino , Masculino , Opuntia/parasitología , Factores Sexuales
8.
J Econ Entomol ; 101(2): 314-24, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18459394

RESUMEN

Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) is an invasive herbivore that poses a serious risk to Opuntia cacti in North America. Knowledge of the flight behavior of the cactus moth is crucial for a better understanding of natural dispersal, and for both monitoring and control. We used computer-linked flight mills to investigate diel flight activity and flight performance in relation to gender, age, mating status, and body size. Maximal flight activity for both mated and unmated moths occurred during twilight, whereas flight activity was low during photophase. The total distance flown and the number of initiated flights within a diel cycle were higher in both unmated and mated females than in males, but the longest single flight was similar in both genders. These findings suggest that pheromone trap captures of males likely indicate the simultaneous presence of females and that mated females might even be in areas where males are not detected yet. Flight performance heterogeneity was large, with a small portion of the population (both males and females) performing long unbroken flights, whereas the majority made short flights. Females had higher pupal and adult body size and shorter longevity than males. A few individuals, particularly young mated females, flying long distances may be important for active spread of a population and the colonization of new habitats. Implications of this study in the control of the cactus moth by using the sterile insect technique are discussed.


Asunto(s)
Envejecimiento/fisiología , Tamaño Corporal/fisiología , Vuelo Animal/fisiología , Lepidópteros/fisiología , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...