Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 9(11): 6034-6044, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37846081

RESUMEN

Electrogenic microorganisms serve as important biocatalysts for microbial electrochemical sensors (MESes). The electrical signal produced is based on the rate of electron transfer between the microbes and electrodes, which represents the biotoxicity of water. However, existing MESes require complex and sophisticated fabrication methods. Here, several low-cost and rapid surface modification strategies (carbon powder-coated, flame-oxidized, and acid-bleached) have been demonstrated and studied for biosensing purposes. Surface-modified MESe bioanodes were successfully applied to detect multiple model pollutants including sodium acetate, ethanol, thinner, and palm oil mill effluent under three different testing sequences, namely, pollutant incremental, pollutant dumping, and water dilution tests. The carbon powder-coated bioanode showed the most responsive signal profile for all the three tests, which is in line with the average roughness values (Ra) when tested with atomic force microscopy. The carbon powder-coated electrode possessed a Ra value of 0.844, while flame-oxidized, acid-bleached, and control samples recorded 0.323, 0.336, and 0.264, respectively. The higher roughness was caused by the carbon coating and provided adhesive sites for microbial attachment and growth. The accuracy of MESe was also verified by correlating with chemical oxygen demand (COD) results. Similar to the sensitivity test, the carbon powder-coated bioanode obtained the highest R2 value of 0.9754 when correlated with COD results, indicating a high potential of replacing conventional water quality analysis methods. The reported work is of great significance to showcase facile surface modification techniques for MESes, which are cost-effective and sustainable while retaining the biocompatibility toward the microbial community with carbon-based coatings.


Asunto(s)
Contaminantes Ambientales , Acero Inoxidable , Acero Inoxidable/química , Polvos , Electrodos , Carbono/química
2.
Front Microbiol ; 14: 1192187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520357

RESUMEN

Microbial electrosynthesis (MES) is an emerging electrochemical technology currently being researched as a CO2 sequestration method to address climate change. MES can convert CO2 from pollution or waste materials into various carbon compounds with low energy requirements using electrogenic microbes as biocatalysts. However, the critical component in this technology, the cathode, still needs to perform more effectively than other conventional CO2 reduction methods because of poor selectivity, complex metabolism pathways of microbes, and high material cost. These characteristics lead to the weak interactions of microbes and cathode electrocatalytic activities. These approaches range from cathode modification using conventional engineering approaches to new fabrication methods. Aside from cathode development, the operating procedure also plays a critical function and strategy to optimize electrosynthesis production in reducing operating costs, such as hybridization and integration of MES. If this technology could be realized, it would offer a new way to utilize excess CO2 from industries and generate profitable commodities in the future to replace fossil fuel-derived products. In recent years, several potential approaches have been tested and studied to boost the capabilities of CO2-reducing bio-cathodes regarding surface morphology, current density, and biocompatibility, which would be further elaborated. This compilation aims to showcase that the achievements of MES have significantly improved and the future direction this is going with some recommendations. Highlights - MES approach in carbon sequestration using the biotic component.- The role of microbes as biocatalysts in MES and their metabolic pathways are discussed.- Methods and materials used to modify biocathode for enhancing CO2 reduction are presented.

3.
Sci Total Environ ; 855: 158527, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096221

RESUMEN

Microbial electrodialysis cells (MEDCs) offer simultaneous wastewater treatment, water desalination, and hydrogen production. In a conventional design of MEDCs, the overall performance is retarded by the accumulation of protons on the anode due to the integration of an anion exchange membrane (AEM). The accumulation of protons reduces the anolyte pH to become acidic, affecting the microbial viability and thus limiting the charge carrier needed for the cathodic reaction. This study has modified the conventional MEDC with an internal proton migration pathway, known as the internal proton migration pathway-MEDC (IP-MEDC). Simulation tests under abiotic conditions demonstrated that the pH changes in the anolyte and catholyte of IP-MEDC were smaller than the pH changes in the anolyte and catholyte without the proton pathways. Under biotic conditions, the performance of the IP-MEDC agreed well with the simulation test, showing a significantly higher chemical oxygen demand (COD) removal rate, desalination rate, and hydrogen production than without the migration pathway. This result is supported by the lowest charge transfer resistance shown by EIS analysis and the abundance of microbes on the bioanode through field emission scanning electron microscopy (FESEM) observation. However, hydrogen production was diminished in the second-fed batch cycle, presumably due to the active diffusion of high Cl¯ concentrations from desalination to the anode chamber, which was detrimental to microbial growth. Enlarging the anode volume by threefold improved the COD removal rate and hydrogen production rate by 1.7- and 3.4-fold, respectively, owing to the dilution effect of Cl¯ in the anode. This implied that the dilution effect satisfies both the microbial viability and conductivity. This study also suggests that the anolyte and catholyte replacement frequencies can be reduced, typically at a prolonged hydraulic retention time, thus minimizing the operating cost (e.g., solution pumping). The use of a high concentration of NaCl (35 g L-1) in the desalination chamber and catholyte provides a condition that is close to practicality.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Protones , Salinidad , Electrodos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...