Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 14(20): 1973-1981, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35531873

RESUMEN

Attenuated total reflectance-infrared spectroscopy (ATR-IR) coupled with partial least squares regression (PLSR) was evaluated as a rapid, label free and cost-effective tool to quantify water content in extracts obtained from spirulina wet biomass using a glucose glycerol natural deep eutectic solvent (NADES). NADESs are green, renewable and biodegradable solvents with unique properties outcompeting existing organic solvents, for instance, for plant or biomass extraction. The properties of NADESs depend critically on their water concentration, and therefore, it is essential to develop methods to monitor it, to ensure optimal extraction efficiency and experimental repeatability to achieve a better standardization of extraction protocols. First, Karl Fischer titration was performed on a set of 20 NADES extracts in order to obtain reference water concentrations. Secondly, ATR-IR spectra were collected and subjected to datamining to construct PLSR predictive models. An R2 value of 0.9996, a mean root mean square error of cross validation of 0.136% w/w and a root mean square error of prediction of 0.130% w/w highlight the feasibility and reliability to perform quantitative analysis using ATR-IR. Moreover, the mean relative error percentage achieved, ∼0.5%, confirms the high accuracy of water concentration determination in NADES extracts. This work demonstrates that powerful alternatives are available to provide more environmentally responsible analytical protocols. ATR-IR spectroscopy applied to NADES extracts does not require any sample preparation, reagents or solvents and has minimal requirements for single use consumables. The technique is consistent with current concerns to develop greener chemistry, especially in the field of extraction of natural compounds from plants which currently represents a major focus of interest in both research and industry.


Asunto(s)
Biomasa , Spirulina , Agua , Reproducibilidad de los Resultados , Solventes/química , Análisis Espectral , Agua/química
2.
Molecules ; 26(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34770964

RESUMEN

With the growing interest in more environmentally friendly solvents and processes, the introduction of Natural Deep Eutectic Solvents (NaDES) as low cost, non-toxic and biodegradable solvents represent a new opportunity for green and sustainable chemistry. Thanks to their remarkable advantages, NaDES are now arousing growing interest in many fields of research such as food, health, cosmetics and biofuels. Around the world, NaDES are seen as a promising alternative to commonly used petrochemical solvents. The objective of this review is to draw up a panorama of the existing skills on NaDES in French laboratories and industries for the valuation of natural products. This review therefore focuses on current applications, skills and perspectives, in order to analyze the place of French research in the use of NaDES for the valorization of biomass since 2015.


Asunto(s)
Productos Biológicos/química , Biomasa , Francia , Solventes/química
3.
Molecules ; 24(16)2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430982

RESUMEN

In recent years, almost all extraction processes in the perfume, cosmetic, pharmaceutical, food ingredients, nutraceuticals, biofuel and fine chemical industries rely massively on solvents, the majority of which have petroleum origins. The intricate processing steps involved in the industrial extraction cycle makes it increasingly difficult to predict the overall environmental impact; despite the tremendous energy consumption and the substantial usage of solvents, often the yields are indicated in decimals. The ideal alternative solvents suitable for green extraction should have high solvency, high flash points with low toxicity and low environmental impacts, be easily biodegradable, obtained from renewable (non-petrochemical) resources at a reasonable price and should be easy to recycle without any deleterious effect to the environment. Finding the perfect solvent that meets all the aforementioned requirements is a challenging task, thus the decision for the optimum solvent will always be a compromise depending on the process, the plant and the target molecules. The objective of this comprehensive review is to furnish a vivid picture of current knowledge on alternative, green solvents used in laboratories and industries alike for the extraction of natural products focusing on original methods, innovation, protocols, and development of safe products.


Asunto(s)
Productos Biológicos/química , Extractos Vegetales/química , Solventes/química , Animales , Alimentos , Humanos
4.
Molecules ; 24(11)2019 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-31181870

RESUMEN

This study aims at investigating p-menthane, a novel bio-based solvent resulting from the hydrogenation of d-limonene, as a green alternative to n-hexane or toluene for the extraction and solubilization of natural substances. First, conductor-like combination of quantum chemistry (COSMO) coupled with statistical thermodynamics (RS) calculations show a comparable solubilization profile of p-menthane and n-hexane for carotene, volatile monoterpenes such as carvone and limonene, and model triglycerides. Other data obtained experimentally in solid/liquid extraction conditions further indicate that p-menthane showed similar performances to n-hexane for extracting carotenes from carrots, aromas from caraway seeds, and oils from rapeseeds, as these products showed a comparable composition. p-Menthane was also tested using common analytical extraction procedures such as Soxhlet for determination of oil content via multiple extraction stages, and Dean-Stark for determination of water content via azeotropic distillation. For both systems, yields were comparable, but for Dean-Stark, the distillation curve slope was higher when using p-menthane, and the time needed to attain 100% water recovery was 55% shorter than for toluene. Taken together, these results reveal the potential of p-menthane as a green replacer for petroleum-based solvents such as n-hexane or toluene.


Asunto(s)
Productos Biológicos/química , Citrus sinensis/química , Tecnología Química Verde/métodos , Mentol/química , Solventes/química , Carotenoides/aislamiento & purificación , Carum/química , Daucus carota/química , Destilación , Ácidos Grasos/análisis , Cinética , Odorantes/análisis , Aceite de Brassica napus , Semillas/química , Solubilidad , Tolueno/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA