Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Evodevo ; 13(1): 15, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897030

RESUMEN

BACKGROUND: Hox genes are key regulators of appendage development in the insect body plan. The body plan of mayfly (Ephemeroptera) nymphs differs due to the presence of abdominal appendages called gills. Despite mayflies' phylogenetic position in Paleoptera and novel morphology amongst insects, little is known of their developmental genetics, such as the appendage-regulating Hox genes. To address this issue we present an annotated, early instar transcriptome and embryonic expression profiles for Antennapedia, Ultrabithorax, and Abdominal A proteins in the mayfly Hexagenia limbata, identify putative Hox protein sequences in the mayflies H. limbata, Cloeon dipterum, and Ephemera danica, and describe the genomic organization of the Hox gene cluster in E. danica. RESULTS: Transcriptomic sequencing of early instar H. limbata nymphs yielded a high-quality assembly of 83,795 contigs, of which 22,975 were annotated against Folsomia candida, Nilaparvata lugens, Zootermopsis nevadensis and UniRef90 protein databases. Homeodomain protein phylogeny and peptide annotations identified coding sequences for eight of the ten canonical Hox genes (excluding zerknüllt/Hox3 and fushi tarazu) in H. limbata and C. dipterum, and all ten in E. danica. Mayfly Hox protein sequences and embryonic expression patterns of Antp, Ubx, and Abd-A appear highly conserved with those seen in other non-holometabolan insects. Similarly, the genomic organization of the Hox cluster in E. danica resembles that seen in most insects. CONCLUSIONS: We present evidence that mayfly Hox peptide sequences and the embryonic expression patterns for Antp, Ubx, and Abd-A are extensively conserved with other insects, as is organization of the mayfly Hox gene cluster. The protein data suggest mayfly Antp, Ubx, and Abd-A play appendage promoting and repressing roles during embryogenesis in the thorax and abdomen, respectively, as in other insects. The identified expression of eight Hox genes, including Ubx and abd-A, in early instar nymphs further indicates a post-embryonic role, possibly in gill development. These data provide a basis for H. limbata as a complementary Ephemeridae model to the growing repertoire of mayfly model species and molecular techniques.

2.
J Pharmacol Toxicol Methods ; 106: 106915, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32871229

RESUMEN

INTRODUCTION: Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are being evaluated for their use in pharmacological and toxicological testing, particularly for electrophysiological side effects. However, little is known about the composition of the commercially available iCell cardiomyocyte (Fuijifilm Cellular Dynamics) cultures and the transcriptomic phenotype of individual cells. METHODS: We characterized iCell cardiomyocytes (assumed to be a mixture of nodal-, atrial-, and ventricular-like cardiomyocytes together with potential residual non-myocytes) using bulk RNA-sequencing, followed by investigation of cellular heterogeneity using two different single-cell RNA-sequencing platforms. RESULTS: Bulk RNA-sequencing identified key cardiac markers (TNNT2, MYL7) as well as fibroblast associated genes (P4HB, VIM), and cardiac ion channels in the iCell cardiomyocyte culture. High-resolution single cell RNA-sequencing demonstrated that both, cardiac and fibroblast-related genes were co-expressed throughout the cell population. This approach resolved two cell clusters within iCell cardiomyocytes. Interestingly, these clusters could not be associated with known cardiac subtypes. However, transcripts of ion channels potentially useful as functional markers for cardiac subtypes were below the detection limits of the single-cell approaches used. Instead, one cluster (10.8% of the cells) is defined by co-expression of cardiac and cell cycle-related genes (e.g. TOP2A). Incorporation of bromodeoxyuridine further confirmed the capability of iCell cardiomyocytes to enter cell cycle. DISCUSSION: The co-expression of cardiac related genes with cell cycle or fibroblast related genes may be interpreted either as aberrant or as an immature feature. However, this excludes the presence of a non-cardiomyocyte sub-population and indicates that some cardiomyocytes themselves enter cell cycle.


Asunto(s)
Miocitos Cardíacos/fisiología , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Biomarcadores/análisis , Ciclo Celular/genética , Diferenciación Celular/genética , Línea Celular , Separación Celular , Evaluación Preclínica de Medicamentos/métodos , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Transcriptoma/fisiología
3.
Mol Neurobiol ; 57(2): 616-634, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31402430

RESUMEN

The human KCTD13 gene is located within the 16p11.2 locus and copy number variants of this locus are associated with a high risk for neuropsychiatric diseases including autism spectrum disorder and schizophrenia. Studies in zebrafish point to a role of KCTD13 in proliferation of neural precursor cells which may contribute to macrocephaly in 16p11.2 deletion carriers. KCTD13 is highly expressed in the fetal human brain and in mouse cortical neurons, but its contribution to the development and function of mammalian neurons is not completely understood. In the present study, we deleted the KCTD13 gene in human-induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 nickase. Following neural differentiation of KCTD13 deficient and isogenic control iPSC lines, we detected a moderate but significant inhibition of DNA synthesis and proliferation in KCTD13 deficient human neural precursor cells. KCTD13 deficient cortical neurons derived from iPSCs showed decreased neurite formation and reduced spontaneous network activity. RNA-sequencing and pathway analysis pointed to a role for ERBB signaling in these phenotypic changes. Consistently, activating and inhibiting ERBB kinases rescued and aggravated, respectively, impaired neurite formation. In contrast to findings in non-neuronal human HeLa cells, we did not detect an accumulation of the putative KCTD13/Cullin-3 substrate RhoA, and treatment with inhibitors of RhoA signaling did not rescue decreased neurite formation in human KCTD13 knockout neurons. Taken together, our data provide insight into the role of KCTD13 in neurodevelopmental disorders, and point to ERBB signaling as a potential target for neuropsychiatric disorders associated with KCTD13 deficiency.


Asunto(s)
Sistemas CRISPR-Cas/genética , Corteza Cerebral/patología , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Células Madre Pluripotentes Inducidas/patología , Trastornos Mentales/genética , Neuronas/patología , Proteínas Nucleares/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Diferenciación Celular , Proliferación Celular , ADN/biosíntesis , Humanos , Células-Madre Neurales/metabolismo , Neuritas/metabolismo , Proteínas Nucleares/deficiencia , Receptor ErbB-2/metabolismo , Factores de Riesgo , Proteína de Unión al GTP rhoA/metabolismo
4.
Clin Exp Pharmacol Physiol ; 46(12): 1201-1215, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31429474

RESUMEN

In patients with breast cancer, metastases of cancer cells to the axial skeleton may cause excruciating pain, particularly in the advanced stages. The current drug treatments available to alleviate this debilitating pain condition often lack efficacy and/or produce undesirable side effects. Preclinical animal models of cancer-induced bone pain are key to studying the mechanisms that cause this pain and for the success of drug discovery programs. In a previous study conducted in our laboratory, we validated and characterised the rat model of Walker 256 cell-induced bone pain, which displayed several key resemblances to the human pain condition. However, gene level changes that occur in the pathophysiology of cancer-induced bone pain in this preclinical model are unknown. Hence, in this study, we performed the transcriptomic characterisation of the Walker 256 cell line cultured in vitro to predict the molecular genetic profile of this cell line. We also performed transcriptomic characterisation of the Walker 256 cell-induced bone pain model in rats using the lumbar spinal cord and lumbar dorsal root ganglia tissues. Here we show that the Walker 256 cell line resembles the basal-B molecular subtype of human breast cancer cell lines. We also identify several genes that may underpin the progression of pain hypersensitivities in this condition, however, this needs further confirmatory studies. These transcriptomic insights have the potential to direct future studies aimed at identifying various mechanisms underpinning pain hypersensitivities in this model that may also assist in discovery of novel pain therapeutics for breast cancer-induced bone pain.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Dolor en Cáncer/genética , Carcinoma 256 de Walker/genética , Carcinoma 256 de Walker/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Transcriptoma , Animales , Biomarcadores de Tumor/genética , Neoplasias Óseas/complicaciones , Dolor en Cáncer/etiología , Dolor en Cáncer/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Hiperalgesia/etiología , Hiperalgesia/genética , Hiperalgesia/patología , Dolor/etiología , Dolor/genética , Dolor/patología , Ratas , Ratas Wistar , Médula Espinal/metabolismo , Médula Espinal/patología
5.
Sci Rep ; 9(1): 10699, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337793

RESUMEN

Combining single-cell RNA sequencing (scRNA-seq) with upstream cell preservation procedures such as cryopreservation or methanol fixation has recently become more common. By separating cell handling and preparation, from downstream library generation, scRNA-seq workflows are more flexible and manageable. However, the inherent transcriptomic changes associated with cell preservation and how they may bias further downstream analysis remain unknown. Here, we present a side-by-side droplet-based scRNA-seq analysis, comparing the gold standard - fresh cells - to three different cell preservation workflows: dimethyl sulfoxide based cryopreservation, methanol fixation and CellCover reagent. Cryopreservation proved to be the most robust protocol, maximizing both cell integrity and low background ambient RNA. Importantly, gene expression profiles from fresh cells correlated most with those of cryopreserved cells. Such similarities were consistently observed across the tested cell lines (R ≥ 0.97), monocyte-derived macrophages (R = 0.97) and immune cells (R = 0.99). In contrast, both methanol fixation and CellCover preservation showed an increased ambient RNA background and an overall lower gene expression correlation to fresh cells. Thus, our results demonstrate the superiority of cryopreservation over other cell preservation methods. We expect our comparative study to provide single-cell omics researchers invaluable support when integrating cell preservation into their scRNA-seq studies.


Asunto(s)
Criopreservación/métodos , Dimetilsulfóxido , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Humanos
6.
BMC Med Genomics ; 12(1): 69, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122257

RESUMEN

BACKGROUND: The ability to generate recombinant drug target proteins is important for drug discovery research as it facilitates the investigation of drug-target-interactions in vitro. To accomplish this, the target's exact protein sequence is required. Public databases, such as Ensembl, UniProt and RefSeq, are extensive protein and nucleotide sequence repositories. However, many sequences for non-human organisms are predicted by computational pipelines and may thus be incomplete or incorrect. This could lead to misinterpreted experimental outcomes due to gaps or errors in orthologous drug target sequences. Transcriptome analysis by RNA-Seq has been established as a standard method for gene expression analysis. Apart from this common application, paired-end RNA-Seq data can also be used to obtain full coverage cDNA sequences via de novo transcriptome assembly. METHODS: To assess whether de novo transcriptome assemblies can be used to determine a protein's sequence by searching the assembly for a known orthologous sequence, we generated 3 × 6 = 18 tissue specific assemblies (three organs: brain, kidney and liver; six species: human, mouse, rat, dog, pig and cynomolgus monkey). These assemblies and the manually curated human protein sequences from UniProtKB/Swiss-Prot were used in a reciprocal BLAST search to identify best matching hits. We automated and generalised our approach and present the a&o-tool, a workflow which exploits de novo assemblies of paired-end RNA-Seq data and orthology information for target sequence validation and refinement across related species. Furthermore, the a&o-tool extracts best hits' sequences from a reciprocal BLAST search, translates them into protein sequences, computes a multiple sequence alignment and quantifies the refinement. RESULTS: For the three human assemblies we observed a hit rate greater than 60% with 100% sequence coverage and identity. For assemblies from the other species we observed similar hit rates and coverage with highest identities for cynomolgus monkey. CONCLUSIONS: In summary, we show how to refine protein sequences using RNA-Seq data and sequence information from closely related species. With the a&o-tool we provide a fully automated pipeline to perform refinement including cDNA translation and multiple sequence alignment for visual inspection. The major prerequisite for applying the a&o-tool is high quality sequencing data.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Homología de Secuencia de Ácido Nucleico , Animales , Genómica , Humanos , Análisis de Secuencia de ARN
7.
Mol Neurobiol ; 56(7): 5111-5121, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30484112

RESUMEN

Chronic administration of L-DOPA, the first-line treatment of dystonic symptoms in childhood or in Parkinson's disease, often leads to the development of abnormal involuntary movements (AIMs), which represent an important clinical problem. Although it is known that Riluzole attenuates L-DOPA-induced AIMs, the molecular mechanisms underlying this effect are not understood. Therefore, we studied the behavior and performed RNA sequencing of the striatum in three groups of rats that all received a unilateral lesion with 6-hydroxydopamine in their medial forebrain bundle, followed by the administration of saline, L-DOPA, or L-DOPA combined with Riluzole. First, we provide evidence that Riluzole attenuates AIMs in this rat model. Subsequently, analysis of the transcriptomics data revealed that Riluzole is predicted to reduce the activity of CREB1, a transcription factor that regulates the expression of multiple proteins that interact in a molecular landscape involved in apoptosis. Although this mechanism underlying the beneficial effect of Riluzole on AIMs needs to be confirmed, it provides clues towards novel or existing compounds for the treatment of AIMs that modulate the activity of CREB1 and, hence, its downstream targets.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Discinesia Inducida por Medicamentos/prevención & control , Levodopa/toxicidad , Riluzol/uso terapéutico , Animales , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Masculino , Oxidopamina/toxicidad , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Riluzol/farmacología
8.
Sci Data ; 4: 170185, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29231921

RESUMEN

Gene functionality is closely connected to its expression specificity across tissues and cell types. RNA-Seq is a powerful quantitative tool to explore genome wide expression. The aim of this study is to provide a comprehensive RNA-Seq dataset across the same 13 tissues for mouse and rat, two of the most relevant species for biomedical research. The dataset provides the transcriptome across tissues from three male C57BL6 mice and three male Han Wistar rats. We also describe our bioinformatics pipeline to process and technically validate the data. Principal component analysis shows that tissue samples from both species cluster similarly. We show by comparative genomics that many genes with high sequence identity with respect to their human orthologues also have a highly correlated tissue distribution profile and are in agreement with manually curated literature data for human. In summary, the present study provides a unique resource for comparative genomics and will facilitate the analysis of tissue specificity and cross-species conservation in higher organisms.


Asunto(s)
Ratones/genética , Ratas/genética , Transcriptoma , Animales , Genómica , Especificidad de Órganos , ARN , Análisis de Secuencia de ARN
9.
Mol Metab ; 6(4): 340-351, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28377873

RESUMEN

OBJECTIVE: In type 2 diabetes (T2D), pancreatic ß cells become progressively dysfunctional, leading to a decline in insulin secretion over time. In this study, we aimed to identify key genes involved in pancreatic beta cell dysfunction by analyzing multiple mouse strains in parallel under metabolic stress. METHODS: Male mice from six commonly used non-diabetic mouse strains were fed a high fat or regular chow diet for three months. Pancreatic islets were extracted and phenotypic measurements were recorded at 2 days, 10 days, 30 days, and 90 days to assess diabetes progression. RNA-Seq was performed on islet tissue at each time-point and integrated with the phenotypic data in a network-based analysis. RESULTS: A module of co-expressed genes was selected for further investigation as it showed the strongest correlation to insulin secretion and oral glucose tolerance phenotypes. One of the predicted network hub genes was Elovl2, encoding Elongase of very long chain fatty acids 2. Elovl2 silencing decreased glucose-stimulated insulin secretion in mouse and human ß cell lines. CONCLUSION: Our results suggest a role for Elovl2 in ensuring normal insulin secretory responses to glucose. Moreover, the large comprehensive dataset and integrative network-based approach provides a new resource to dissect the molecular etiology of ß cell failure under metabolic stress.


Asunto(s)
Acetiltransferasas/genética , Diabetes Mellitus Tipo 2/genética , Insulina/metabolismo , Acetiltransferasas/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Elongasas de Ácidos Grasos , Redes Reguladoras de Genes , Glucosa/metabolismo , Humanos , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo
10.
BMC Res Notes ; 10(1): 121, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28274266

RESUMEN

BACKGROUND: Functional 3D organ models such as precision-cut lung slices (PCLS) have recently captured the attention of biomedical research. To enable wider implementation in research and development, these new biologically relevant organ models are being constantly refined. A very important issue is to improve the preparation of high-quality RNA (ribonucleic acid) from PCLS for drug discovery and development of new therapies. Gene expression analysis at different levels is used as an important experimental readout. Genome-wide analysis using microarrays is mostly applied for biomarker selection in disease models or in comprehensive toxicological studies. Specific biomarker testing by reverse transcriptase quantitative polymerase chain reaction (RTqPCR) is often used in efficacy studies. Both applications require high-quality RNA as starting material for the generation of reliable data. Additionally, a small number of slices should be sufficient for satisfactory RNA isolation to allow as many experimental conditions as possible to be covered with a given tissue sample. Unfortunately, the vast amount of agarose in PCLS impedes RNA extraction according to the standard procedures. RESULTS: We established an optimized protocol for RNA isolation from PCLS from humans, rats, mice, marmosets, and rhesus macaques based on the separation of lysis and precipitation steps and a magnetic-bead cleanup procedure. The resulting RNA is of high purity and possesses a high degree of integrity. There are no contaminations affecting RTqPCR efficiency or any enzymatic step in sample preparation for microarray analysis. CONCLUSIONS: In summary, we isolated RNA from PCLS from different species that is well suited for RTqPCR and for microarray analysis as downstream applications.


Asunto(s)
Pulmón/química , Microtomía/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN/aislamiento & purificación , Transcriptoma , Anciano , Animales , Callithrix , Femenino , Humanos , Pulmón/cirugía , Macaca mulatta , Imanes , Masculino , Ratones , Ratones Endogámicos BALB C , Análisis por Micromatrices , Microtomía/instrumentación , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , ARN/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Neuropharmacology ; 120: 4-7, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27561970

RESUMEN

Efficient transcytosis across the blood-brain-barrier (BBB) is an important strategy for accessing drug targets within the central nervous system (CNS). Despite extensive research the number of studies reporting successful delivery of macromolecules or macromolecular complexes to the CNS has remained very low. In order to expand current research it is important to know which receptors are selective and abundant on the BBB so that novel CNS-targeting antibodies or other ligands could be developed, targeting those receptors for transcytosis. To do that, we have set up a proteomics- and transcriptomics-based workflow within the COMPACT project (Collaboration on the Optimization of Macromolecular Pharmaceutical Access to Cellular Targets) of the Innovative Medicines Initiative (IMI) of the EU. Here we summarise our overall strategy in endothelial transcytosis research, describe in detail the related challenges, and discuss future perspectives of these studies. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".


Asunto(s)
Transporte Biológico/fisiología , Barrera Hematoencefálica/fisiología , Sistemas de Liberación de Medicamentos , Transcitosis/fisiología , Animales , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteómica , Transcitosis/efectos de los fármacos
12.
Mol Metab ; 5(8): 656-668, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27656403

RESUMEN

OBJECTIVE: Insulin release from pancreatic islet ß cells should be tightly controlled to avoid hypoglycemia and insulin resistance. The cortical actin cytoskeleton is a gate for regulated exocytosis of insulin secretory granules (SGs) by restricting their mobility and access to the plasma membrane. Prior studies suggest that SGs interact with F-actin through their transmembrane cargo islet cell autoantigen 512 (Ica512) (also known as islet antigen 2/Ptprn). Here we investigated how Ica512 modulates SG trafficking and exocytosis. METHODS: Transcriptomic changes in Ica512 (-/-) mouse islets were analyzed. Imaging as well as biophysical and biochemical methods were used to validate if and how the Ica512-regulated gene villin modulates insulin secretion in mouse islets and insulinoma cells. RESULTS: The F-actin modifier villin was consistently downregulated in Ica512 (-/-) mouse islets and in Ica512-depleted insulinoma cells. Villin was enriched at the cell cortex of ß cells and dispersed villin (-/-) islet cells were less round and less deformable. Basal mobility of SGs in villin-depleted cells was enhanced. Moreover, in cells depleted either of villin or Ica512 F-actin cages restraining cortical SGs were enlarged, basal secretion was increased while glucose-stimulated insulin release was blunted. The latter changes were reverted by overexpressing villin in Ica512-depleted cells, but not vice versa. CONCLUSION: Our findings show that villin controls the size of the F-actin cages restricting SGs and, thus, regulates their dynamics and availability for exocytosis. Evidence that villin acts downstream of Ica512 also indicates that SGs directly influence the remodeling properties of the cortical actin cytoskeleton for tight control of insulin secretion.

13.
Toxicol Appl Pharmacol ; 305: 153-160, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27288733

RESUMEN

INTRODUCTION: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. METHODS AND RESULTS: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (±dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1ß), compared to vehicle controls. CONCLUSION: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antagonistas del Receptor de Bradiquinina B1/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Lisinopril/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Remodelación Ventricular/efectos de los fármacos , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Ratas Sprague-Dawley , Receptor de Bradiquinina B1/genética
14.
Hypertension ; 66(4): 906-12, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26303291

RESUMEN

This study examined whether the kinin B1 receptor is involved in the pathogenesis of pulmonary hypertension, and whether its inhibition could reduce inflammation, pulmonary hypertension, vascular remodeling, and right heart dysfunction. Male Wistar rats underwent left pneumonectomy. Seven days later, the rats were injected subcutaneously with monocrotaline (60 mg/kg). The rats were then randomly assigned to receive treatment with vehicle or with BI113823 (a selective B1 receptor antagonist, 30 mg/kg, twice per day) via oral gavage from the day of monocrotaline injection to day 28. By day 28, BI113823-treated rats had significantly lower mean pulmonary artery pressure, less right ventricular hypertrophy, and pulmonary arterial neointimal formation than that of the vehicle-treated rats. Real-time polymerase chain reaction revealed that there was a significant increase in mRNA expression of B1 receptors in the lungs of monocrotaline-challenged pneumonectomized rats. Treatment with BI113823 significantly reduced macrophage recruitment, as measured via bronchoalveolar lavage. It also markedly reduced CD-68 positive macrophages and proliferating cell nuclear antigen positive cells in the perivascular areas, reduced expression of inducible nitric oxide synthase, matrix metalloproteinase 2 and 9, and B1 receptors compared with measurements in vehicle-treated rats. These findings demonstrate that kinin B1 receptors represent a novel therapeutic target for pulmonary arterial hypertension.


Asunto(s)
ADN/genética , Regulación de la Expresión Génica , Hipertensión Pulmonar/genética , Cininas/genética , Remodelación Vascular/fisiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Inmunohistoquímica , Cininas/biosíntesis , Cininas/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Biotechnol J ; 10(9): 1412-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26212696

RESUMEN

Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Perfilación de la Expresión Génica/métodos , ARN/análisis , ARN/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ARN/métodos , Animales , Anticuerpos Monoclonales/química , Biotecnología , Células CHO , Biología Computacional , Cricetinae , Cricetulus , Glicosilación , ARN/química , ARN/metabolismo , Proteínas Recombinantes/química
16.
Am J Respir Cell Mol Biol ; 53(3): 291-302, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25845025

RESUMEN

Viral vectors have been applied successfully to generate disease-related animal models and to functionally characterize target genes in vivo. However, broader application is still limited by complex vector production, biosafety requirements, and vector-mediated immunogenic responses, possibly interfering with disease-relevant pathways. Here, we describe adeno-associated virus (AAV) variant 6.2 as an ideal vector for lung delivery in mice, overcoming most of the aforementioned limitations. In a proof-of-concept study using AAV6.2 vectors expressing IL-13 and transforming growth factor-ß1 (TGF-ß1), we were able to induce hallmarks of severe asthma and pulmonary fibrosis, respectively. Phenotypic characterization and deep sequencing analysis of the AAV-IL-13 asthma model revealed a characteristic disease signature. Furthermore, suitability of the model for compound testing was also demonstrated by pharmacological intervention studies using an anti-IL-13 antibody and dexamethasone. Similarly, the AAV-TGF-ß1 fibrosis model showed several disease-like pathophenotypes monitored by micro-computed tomography imaging and lung function measurement. Most importantly, analyses using stuffer control vectors demonstrated that in contrast to a common adenovirus-5 vector, AAV6.2 vectors did not induce any measurable inflammation and therefore carry a lower risk of altering relevant readouts. In conclusion, we propose AAV6.2 as an ideal vector system for the functional characterization of target genes in the context of pulmonary diseases in mice.


Asunto(s)
Asma/inmunología , Dependovirus/genética , Fibrosis Pulmonar Idiopática/inmunología , Animales , Asma/genética , Asma/metabolismo , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Interleucina-13/biosíntesis , Interleucina-13/genética , Ratones Endogámicos BALB C , Transducción Genética , Factor de Crecimiento Transformador beta1/biosíntesis , Factor de Crecimiento Transformador beta1/genética
17.
Pharmacol Res ; 90: 18-24, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25258294

RESUMEN

This study examined responses of isolated pig coronary arteries after kinin B1 receptor induction by endotoxin. Des-Arg9-bradykinin (DBK) induced concentration-dependent, endothelium-independent contractions in lipopolysaccharide (LPS)-treated but not untreated arterial rings. The B1-receptor antagonist SSR240612, but not the B2-receptor antagonist HOE140, prevented the endothelium-independent contractions to DBK. The DBK-induced contractions were blocked by indomethacin (nonselective cyclooxygenase [COX] inhibitor), celecoxib (selective COX-2 inhibitor), and terbogrel (thromboxane-prostanoid [TP] receptor antagonist) but not valeryl salicylate (selective COX-1 inhibitor), AH6809 (an E prostanoid [EP] and PGD2 receptor [DP1] receptor antagonist), AL 8810 (a selective PGF2α [FP] receptor antagonist), or RO1138452 (a selective I prostanoid [IP] receptor antagonist). They were attenuated by N-(p-amylcinnamoyl) anthranilic acid (ACA), and by DETCA plus tiron but not by l-NAME. Quantitative RT-PCR revealed excessive up-regulations of mRNA expressions of B1 receptors, COX-2, and thromboxane A synthase 1 (TBXAS1) following LPS incubation, but not of B2 receptors or COX-1. The present data demonstrate that B1 receptors are coupled to COX-2 in causing endothelium-independent contractions in endotoxin-treated pig coronary arteries. Accordingly, kinin B1 receptor induction during inflammation may have a pathological significance in the vasculature, particular in coronary arteries with dysfunctional endothelial cells.


Asunto(s)
Vasos Coronarios/fisiología , Ciclooxigenasa 2/fisiología , Receptor de Bradiquinina B1/fisiología , Vasoconstricción/fisiología , Animales , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Antagonistas del Receptor de Bradiquinina B1/farmacología , Vasos Coronarios/efectos de los fármacos , Ciclooxigenasa 1/genética , Ciclooxigenasa 2/genética , Dioxoles/farmacología , Endotelio Vascular , Técnicas In Vitro , Lipopolisacáridos/farmacología , ARN Mensajero/biosíntesis , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Sulfonamidas/farmacología , Porcinos , Tromboxano-A Sintasa/genética , Vasoconstricción/efectos de los fármacos
18.
J Cardiovasc Pharmacol ; 64(3): 209-17, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25192543

RESUMEN

This study examined the vascular effects of bradykinin in health and vascular inflammation comparing responses of isolated pig coronary arteries in the absence and presence of endotoxins. Bradykinin induced contractions in lipopolysaccharide-treated, but not untreated, arterial rings without endothelium. The B2-receptor antagonist HOE140, but not the B1-receptor inhibitor SSR240612, blocked these endothelium-independent contractions in response to bradykinin. The bradykinin-induced contractions were blocked by indomethacin, celecoxib, and terbogrel but not valeryl salicylate, AH6809, AL 8810, or RO1138452. They were attenuated by N-(p-amylcinnamoyl) anthranilic acid, and by diethyldithiocarbamate plus tiron but not by L-NAME. Quantitative reverse-transcription polymerase chain reaction revealed significant upregulations of messenger RNA expressions of B1 receptors, COX-2, and thromboxane A synthase 1 (TBXAS1) following lipopolysaccharide incubation but not of B2 receptors or COX-1. The present data demonstrate that bradykinin induces contractions mediated by the COX-2 pathway in endotoxin-treated pig coronary arteries. These results support differential roles of bradykinin in health and disease.


Asunto(s)
Bradiquinina/metabolismo , Vasos Coronarios/metabolismo , Ciclooxigenasa 2/metabolismo , Inflamación/patología , Animales , Bradiquinina/farmacología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/patología , Ciclooxigenasa 2/genética , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotoxinas/farmacología , Lipopolisacáridos/farmacología , Contracción Muscular/efectos de los fármacos , ARN Mensajero , Receptor de Bradiquinina B1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Tromboxano-A Sintasa/genética , Regulación hacia Arriba
19.
FASEB J ; 28(11): 4972-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25070369

RESUMEN

Fully differentiated pancreatic ß cells are essential for normal glucose homeostasis in mammals. Dedifferentiation of these cells has been suggested to occur in type 2 diabetes, impairing insulin production. Since chronic fuel excess ("glucotoxicity") is implicated in this process, we sought here to identify the potential roles in ß-cell identity of the tumor suppressor liver kinase B1 (LKB1/STK11) and the downstream fuel-sensitive kinase, AMP-activated protein kinase (AMPK). Highly ß-cell-restricted deletion of each kinase in mice, using an Ins1-controlled Cre, was therefore followed by physiological, morphometric, and massive parallel sequencing analysis. Loss of LKB1 strikingly (2.0-12-fold, E<0.01) increased the expression of subsets of hepatic (Alb, Iyd, Elovl2) and neuronal (Nptx2, Dlgap2, Cartpt, Pdyn) genes, enhancing glutamate signaling. These changes were partially recapitulated by the loss of AMPK, which also up-regulated ß-cell "disallowed" genes (Slc16a1, Ldha, Mgst1, Pdgfra) 1.8- to 3.4-fold (E < 0.01). Correspondingly, targeted promoters were enriched for neuronal (Zfp206; P = 1.3 × 10(-33)) and hypoxia-regulated (HIF1; P = 2.5 × 10(-16)) transcription factors. In summary, LKB1 and AMPK, through only partly overlapping mechanisms, maintain ß-cell identity by suppressing alternate pathways leading to neuronal, hepatic, and other characteristics. Selective targeting of these enzymes may provide a new approach to maintaining ß-cell function in some forms of diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Secretoras de Insulina/enzimología , Insulina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
20.
Neuropharmacology ; 85: 328-41, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24907589

RESUMEN

In neuropsychiatry, animal studies demonstrating causal effects of environmental manipulations relevant to human aetiology on behaviours relevant to human psychopathologies are valuable. Such valid models can improve understanding of aetio-pathophysiology and preclinical discovery and development of new treatments. In depression, specific uncontrollable stressful life events are major aetiological factors, and subsequent generalized increases in fearfulness, helplessness and fatigue are core symptoms or features. Here we exposed adult male C57BL/6 mice to 15-day psychosocial stress with loss of social control but minimal physical wounding. One cohort was assessed in a 3-day test paradigm of motor activity, fear conditioning and 2-way avoid-escape behaviour on days 16-18, and a second cohort was assessed in a treadmill fatigue paradigm on days 19 and 29, followed by the 3-day paradigm on days 30-32. All tests used a physical aversive stimulus, namely mild, brief electroshocks. Socially stressed mice displayed decreased motor activity, increased fear acquisition, decreased 2-way avoid-escape responding (increased helplessness) and increased fatigue. They also displayed increased plasma TNF and spleen hypertrophy, and adrenal hypertrophy without hyper-corticoidism. In a third cohort, psychosocial stress effects on brain gene expression were assessed using next generation sequencing. Gene expression was altered in pathways of inflammation and G-protein coupled receptors in prefrontal cortex and amygdala; in the latter, expression of genes important in dopamine function were de-regulated including down-regulated Drd2, Adora2a and Darpp-32. This model can be applied to identify targets for treating psychopathologies such as helplessness or fatigue, and to screen compounds/biologics developed to act at these targets.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Dominación-Subordinación , Dopamina/metabolismo , Neuroinmunomodulación/fisiología , Corteza Prefrontal/fisiopatología , Estrés Psicológico/fisiopatología , Glándulas Suprarrenales/patología , Glándulas Suprarrenales/fisiopatología , Animales , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Reacción de Fuga/fisiología , Fatiga/patología , Fatiga/fisiopatología , Miedo/fisiología , Expresión Génica , Desamparo Adquirido , Masculino , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Bazo/patología , Bazo/fisiopatología , Estrés Psicológico/patología , Factor de Necrosis Tumoral alfa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...