Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
Sleep Health ; 10(1S): S121-S129, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37679265

RESUMEN

OBJECTIVES: Under laboratory settings, light exposure upon waking at night improves sleep inertia symptoms. We investigated whether a field-deployable light source would mitigate sleep inertia in a real-world setting. METHODS: Thirty-six participants (18 female; 26.6 years ± 6.1) completed an at-home, within-subject, randomized crossover study. Participants were awoken 45 minutes after bedtime and wore light-emitting glasses with the light either on (light condition) or off (control). A visual 5-minute psychomotor vigilance task, Karolinska sleepiness scale, alertness and mood scales, and a 3-minute auditory/verbal descending subtraction task were performed at 2, 12, 22, and 32 minutes after awakening. Participants then went back to sleep and were awoken after 45 minutes for the opposite condition. A series of mixed-effect models were performed with fixed effects of test bout, condition, test bout × condition, a random effect of the participant, and relevant covariates. RESULTS: Participants rated themselves as more alert (p = .01) and energetic (p = .001) in the light condition compared to the control condition. There was no effect of condition for descending subtraction task outcomes when including all participants, but there was a significant improvement in descending subtraction task total responses in the light condition in the subset of participants waking from N3 (p = .03). There was a significant effect of condition for psychomotor vigilance task outcomes, with faster responses (p < .001) and fewer lapses (p < .001) in the control condition. CONCLUSIONS: Our findings suggest that light modestly improves self-rated alertness and energy after waking at home regardless of sleep stage, with lower aggression and improvements to working memory only after waking from N3. Contrary to laboratory studies, we did not observe improved performance on the psychomotor vigilance task. Future studies should include measures of visual acuity and comfort to assess the feasibility of interventions in real-world settings.

3.
Scand J Work Environ Health ; 50(1): 22-27, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933729

RESUMEN

OBJECTIVES: This study aimed to test the effect of a 30-minute nap versus a 2-hour nap opportunity taken during a simulated night shift on performance, fatigue, sleepiness, mood, and sleep at the end of shift and during post-night shift recovery. METHODS: We conducted a randomized crossover trial of three nap conditions (30-minute, 2-hour, and no-nap) during 12-hour simulated night shifts. We tested for differences in performance, fatigue, sleepiness, mood, and sleep during in-lab and at-home recovery. Performance was measured with the Brief Psychomotor Vigilance Test (PVT-B). Subjective ratings were assessed with single-item surveys. RESULTS: Twenty-eight individuals consented to participate [mean age 24.4 (standard deviation 7.2) years; 53.6% female; 85.7% Emergency Medical Services clinicians]. PVT-B false starts at the end of the 12-hour night shift (at 07:00 hours) and at the start of in-lab recovery (08:00 hours) were lower following the 2-hour nap versus other conditions (P<0.05). PVT-B response time at +0 minutes post-recovery nap was poorer compared to pre-recovery nap for the no-nap condition (P=0.003), yet not detected for other nap conditions (P>0.05). Sleepiness, fatigue, and some mood states were lower at most hourly assessments during the in-lab recovery period following the 2-hour nap condition compared to the other conditions. Sleep during recovery did not differ by duration of night shift nap. CONCLUSIONS: A 2-hour nap opportunity versus a 30-minute or no-nap opportunity is beneficial for performance, alertness, and mood post-night shift. No differences were detected in sleep during recovery.


Asunto(s)
Desempeño Psicomotor , Somnolencia , Humanos , Femenino , Adulto Joven , Adulto , Masculino , Estudios Cruzados , Desempeño Psicomotor/fisiología , Sueño/fisiología , Vigilia/fisiología , Ritmo Circadiano/fisiología , Fatiga , Tolerancia al Trabajo Programado/fisiología
4.
Sleep Adv ; 4(1): zpad050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046222

RESUMEN

Sleep inertia, the temporary period of impairment experienced upon waking, is a safety hazard that has been implicated in serious work-related incidents resulting in injuries as well as the loss of life and assets. As such, sleep inertia warrants formal management in industries where personnel are required to undertake their role soon after waking (e.g. emergency services, engineers, and health care). At present, there is a lack of practical, evidence-based guidance on how sleep inertia could be formally managed at an organizational level. We propose a preliminary framework for managing sleep inertia based on the translation of research findings into specific work procedure modifications/control mechanisms. Within the framework, work procedure modifications/control mechanisms to manage sleep inertia are organized into three levels: (1) modifications/controls that eliminate the chance of sleep inertia, (2) modifications/controls that reduce sleep inertia severity, and (3) modifications/controls that manage the risk of errors during sleep inertia. Practical considerations, limitations, and areas of further research are highlighted for each modification/control to help determine how readily each control measure could be implemented by industries at present. A guide for organizations to use this preliminary framework of sleep inertia management is put forward, as well as the next research priorities to strengthen the utility and evidence base of the framework. This paper is part of the Sleep and Circadian Rhythms: Management of Fatigue in Occupational Settings Collection.

5.
Netw Neurosci ; 7(1): 102-121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334002

RESUMEN

Sleep inertia is the brief period of impaired alertness and performance experienced immediately after waking. Little is known about the neural mechanisms underlying this phenomenon. A better understanding of the neural processes during sleep inertia may offer insight into the awakening process. We observed brain activity every 15 min for 1 hr following abrupt awakening from slow wave sleep during the biological night. Using 32-channel electroencephalography, a network science approach, and a within-subject design, we evaluated power, clustering coefficient, and path length across frequency bands under both a control and a polychromatic short-wavelength-enriched light intervention condition. We found that under control conditions, the awakening brain is typified by an immediate reduction in global theta, alpha, and beta power. Simultaneously, we observed a decrease in the clustering coefficient and an increase in path length within the delta band. Exposure to light immediately after awakening ameliorated changes in clustering. Our results suggest that long-range network communication within the brain is crucial to the awakening process and that the brain may prioritize these long-range connections during this transitional state. Our study highlights a novel neurophysiological signature of the awakening brain and provides a potential mechanism by which light improves performance after waking.

6.
Prehosp Emerg Care ; 27(6): 807-814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37347968

RESUMEN

OBJECTIVE: We sought to test the effects of different duration naps on post-nap cognitive performance during simulated night shifts. METHODS: We used a randomized laboratory-based crossover trial design with simulated 12-hr night shifts and each participant completing three conditions of 72 hrs each (Clinicaltrials.gov; registration # NCT04469803). The three conditions tested included no-nap, a 30-min nap opportunity, and a 2-hr nap opportunity. Naps occurred at 02:00 hrs. Cognitive performance was assessed with the Brief 3-min Psychomotor Vigilance Test (PVT-B). Four PVT-B measures include: reaction time (RT in milliseconds (ms)), lapses (RT > 355 ms), false starts (reactions before stimulus or RT <100 ms), and speed (1,000/RT). The PVT-B was performed at the start of the simulated night shift (19:00), end of shift (07:00), pre-nap (02:00), and at 0 mins, 10 mins, 20 mins, and 30 mins following the 30-min and 2-hr nap conditions. Simultaneously, participants reported subjective ratings of fatigue and other constructs. RESULTS: Twenty-eight (15 female), mostly certified emergency medical technicians or paramedics, consented to participate. For all three conditions, looking within condition, PVT-B lapse performance at the end of the 12-hr simulated night shift (at 07:00) was poorer compared to shift start (p < 0.05). Performance on PVT-B speed, RT, and false starts were poorer at shift end than shift start for the no-nap and 30-min nap conditions (p < 0.05), but not for the 2-hr nap condition (p > 0.05). Compared to pre-nap measures, performance on the PVT-B assessed at 0 mins post-nap showed significant performance declines for lapses and speed for both the 30-min and 2-hr nap conditions (p < 0.05), but not at 10, 20, or 30 mins post-nap. After waking from the 2-hr on-shift nap opportunity (at 0 mins), participants rated sleepiness, difficulty with concentration, and alertness poorer than pre-nap (p < 0.05). Participants in the 30-min nap condition rated alertness poorer immediately after the nap (at 0 mins) compared to pre-nap (p < 0.05). CONCLUSIONS: While sleep inertia was detectable immediately following short 30-min and long 2-hr nap opportunities during simulated night shift work, deficits in cognitive performance and subjective ratings quickly dissipated and were not detectable at 10-30 mins post-nap.


Asunto(s)
Servicios Médicos de Urgencia , Horario de Trabajo por Turnos , Humanos , Femenino , Estudios Cruzados , Sueño , Vigilia , Tolerancia al Trabajo Programado
7.
Sleep Adv ; 4(1): zpac043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37193286

RESUMEN

Study Objectives: The influence of biological sex on sleep inertia symptoms is currently unknown. We investigated the role of sex differences in the subjective experience and objective cognitive manifestation of sleep inertia following nighttime awakenings. Methods: Thirty-two healthy adults (16 female, 25.91 ±â€…5.63 years) completed a 1-week at-home study with one experimental night during which sleep was measured by polysomnography and participants were awakened during their habitual sleep time. Participants completed a psychomotor vigilance task, Karolinska Sleepiness Scale (KSS), visual analog mood scales, and a descending subtraction task (DST) prior to sleep (baseline) and at 2, 12, 22, and 32 min after awakening. A series of mixed-effects models with Bonferroni-corrected post hoc tests were used to examine the main effects of test bout and sex, and their interaction, with a random effect of participant, and order of wake-up and sleep history as covariates. Results: All outcomes except for percent correct on the DST showed a significant main effect of test bout, with worse performance after waking compared to baseline (all ps < .003). Significant effects of sex (p = .002) and sex × test bout (p = .01; R2M = 0.49, R2C = 0.69) were observed for KSS, with females reporting a greater increase in sleepiness from baseline to after waking compared to males. Conclusions: These results suggest that while females reported feeling sleepier than males following nighttime awakenings, their cognitive performance was comparable. Future research is needed to determine whether perceptions of sleepiness influence decision-making during the transition from sleep to wakefulness.

8.
Prog Brain Res ; 273(1): 303-330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35940721

RESUMEN

Light is the predominant signal for the human circadian clock to synchronize to the solar 24-h day through an active process called entrainment. Modern light profiles are characterized by exposure to both natural daylight and artificial lighting. A mismatch between these self-selected light profiles and the solar day-night alternation can disrupt the circadian system, resulting in acute and chronic effects for health and safety. In this chapter, we describe (i) how entrainment works in the real world, illustrating the major role of light for this process; (ii) ways in which the circadian system can be disrupted by (external) factors such as irregular sleep, shift work, daylight saving time, and longitudinal position in a time zone; and (iii) how field studies have used light interventions to reduce direct and indirect effects of circadian disruption in ecological settings.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Humanos , Sueño
9.
Aerosp Med Hum Perform ; 93(5): 433-441, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35551720

RESUMEN

INTRODUCTION: COVID-19 has had a significant impact on the aviation industry. While reduced flying capacity may intuitively translate to reduced fatigue risk by way of fewer flights and duty hours, the actual impact of the pandemic on pilot fatigue is unknown.METHODS: We surveyed U.S. commercial airline pilots in late 2020 (N = 669) and early 2021 (N = 156) to assess the impact of COVID-19 on schedules and fatigue during the pandemic.RESULTS: Overall, pilots reported reduced flight and duty hours compared to prepandemic. Average sleep on workdays was slightly shorter in late 2020 (6.87 ± 1.14 h) and recovered to prepandemic levels in early 2021 (6.95 ± 1.11 h). Similarly, the frequency of sleepiness on days off and in-flight increased in late 2020, with 54% of pilots reporting an increase in in-flight sleepiness, then returned to prepandemic levels in early 2021. The use of in-flight sleepiness countermeasures remained the same across assessed time points. Pilots highlighted several factors which impacted their sleep and job performance, including limited access to nutritional food during duty days and layovers, reduced access to exercise facilities during layovers, increased stress due to job insecurity and health concerns, increased distractions and workload, and changes to scheduling.DISCUSSION: Despite a reduction in flights and duty days, COVID-19 led to increased sleepiness on days off and in flight, potentially due to the negative impact of lack of access to essential needs and heightened stress on sleep. Operators need to monitor the change in these COVID-19 related risks as the industry returns to full service.Hilditch CJ, Flynn-Evans EE. Fatigue, schedules, sleep, and sleepiness in U.S. commercial pilots during COVID-19. Aerosp Med Hum Perform. 2022; 93(5):433-441.


Asunto(s)
COVID-19 , Pilotos , COVID-19/epidemiología , Fatiga/epidemiología , Humanos , Sueño , Somnolencia , Tolerancia al Trabajo Programado
10.
J Sleep Res ; 31(5): e13558, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35102669

RESUMEN

Sleep inertia is the brief period of performance impairment and reduced alertness experienced after waking, especially from slow-wave sleep. We assessed the efficacy of polychromatic short-wavelength-enriched light to improve vigilant attention, alertness and mood immediately after waking from slow-wave sleep at night. Twelve participants (six female, 23.3 ± 4.2 years) maintained an actigraphy-confirmed sleep schedule of 8.5 hr for 5 nights, and 5 hr for 1 night prior to an overnight laboratory visit. In the laboratory, participants were awakened from slow-wave sleep, and immediately exposed to either dim, red ambient light (control) or polychromatic short-wavelength-enriched light (light) for 1 hr in a randomized crossover design. They completed a 5-min Psychomotor Vigilance Task, the Karolinska Sleepiness Scale, and Visual Analogue Scales of mood at 2, 17, 32 and 47 min after waking. Following this testing period, lights were turned off and participants returned to sleep. They were awakened from their subsequent slow-wave sleep period and received the opposite condition. Compared with the control condition, participants exposed to light had fewer Psychomotor Vigilance Task lapses (χ2 [1] = 5.285, p = 0.022), reported feeling more alert (Karolinska Sleepiness Scale: F1,77  = 4.955, p = 0.029; Visual Analogue Scalealert : F1,77  = 8.226, p = 0.005), and reported improved mood (Visual Analogue Scalecheerful : F1,77  = 8.615, p = 0.004). There was no significant difference in sleep-onset latency between conditions following the testing period (t10  = 1.024, p = 0.330). Our results suggest that exposure to polychromatic short-wavelength-enriched light immediately after waking from slow-wave sleep at night may help improve vigilant attention, subjective alertness, and mood. Future studies should explore the potential mechanisms of this countermeasure and its efficacy in real-world environments.


Asunto(s)
Sueño de Onda Lenta , Atención , Ritmo Circadiano , Femenino , Humanos , Luz , Desempeño Psicomotor , Sueño , Somnolencia , Vigilia
11.
Physiol Behav ; 242: 113617, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34606883

RESUMEN

STUDY OBJECTIVES: Determine whether 30 s (s) of exercise performed upon waking can reduce sleep inertia and accelerate an increase in the cortisol awakening response (CAR) and core body temperature (CBT), compared to when sedentary. METHODS: Fifteen participants (mean age ± SD, 25.9 ± 5.9 years; six females) completed a counterbalanced, repeated measures, in-laboratory study involving three single experimental nights, each separated by a four-night recovery period. Participants were woken following a 2-h nap (2400-0200) and completed a cycling bout of high-intensity (30-s sprint), low-intensity (30 s at 60% maximum heart rate), or no exercise (sedentary). Sleep inertia testing (eight batteries, 15-min intervals) began immediately following and included measures of subjective sleepiness (Karolinska Sleepiness Scale) and cognitive performance tasks (psychomotor vigilance, serial addition and subtraction, and spatial configuration). CBT was measured continuously via an ingestible telemetric capsule. The CAR was determined using salivary cortisol samples collected at 0, 30 and 45 min post-waking. Data were analysed using mixed effects analysis of variance. RESULTS: There was no difference in cognitive performance or CBT between conditions. Participants felt less sleepy in the high-intensity condition, followed by the low-intensity and sedentary conditions (p = .003). The CAR was greatest in the high-intensity condition, followed by the sedentary condition, and low-intensity condition (p < 0.001), with no differences between the low-intensity and sedentary conditions. CONCLUSIONS: Those who exercise upon waking should be aware that while they may feel more alert, they may not be performing better than if they had not exercised. Future research should investigate whether exercise of different duration or timing may impact sleep inertia.


Asunto(s)
Desempeño Psicomotor , Trastornos del Sueño del Ritmo Circadiano , Ritmo Circadiano , Femenino , Humanos , Polisomnografía , Sueño , Vigilia
12.
Sci Rep ; 11(1): 18530, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521862

RESUMEN

Human error has been implicated as a causal factor in a large proportion of road accidents. Automated driving systems purport to mitigate this risk, but self-driving systems that allow a driver to entirely disengage from the driving task also require the driver to monitor the environment and take control when necessary. Given that sleep loss impairs monitoring performance and there is a high prevalence of sleep deficiency in modern society, we hypothesized that supervising a self-driving vehicle would unmask latent sleepiness compared to manually controlled driving among individuals following their typical sleep schedules. We found that participants felt sleepier, had more involuntary transitions to sleep, had slower reaction times and more attentional failures, and showed substantial modifications in brain synchronization during and following an autonomous drive compared to a manually controlled drive. Our findings suggest that the introduction of partial self-driving capabilities in vehicles has the potential to paradoxically increase accident risk.

13.
J Pineal Res ; 70(3): e12720, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33523499

RESUMEN

Appropriate synchronization of the timing of behaviors with the circadian clock and adequate sleep are both important for almost every physiological process. The timing of the circadian clock relative to social (ie, local) clock time and the timing of sleep can vary greatly among individuals. Whether the timing of these processes is stable within an individual is not well-understood. We examined the stability of circadian-controlled melatonin timing, sleep timing, and their interaction across ~ 100 days in 15 students at a single university. At three time points ~ 35-days apart, circadian timing was determined from the dim-light melatonin onset (DLMO). Sleep behaviors (timing and duration) and chronotype (ie, mid-sleep time on free days corrected for sleep loss on school/work days) were determined via actigraphy and analyzed in ~ 1-month bins. Melatonin timing was stable, with an almost perfect relationship strength as determined via intraclass correlation coefficients ([ICC]=0.85); average DLMO timing across all participants only changed from the first month by 21 minutes in month 2 and 5 minutes in month 3. Sleep behaviors also demonstrated high stability, with ICC relationship strengths ranging from substantial to almost perfect (ICCs = 0.65-0.85). Average DLMO was significantly associated with average chronotype (r2  = 0.53, P <.01), with chronotype displaying substantial stability across months (ICC = 0.61). These findings of a robust stability in melatonin timing and sleep behaviors in young adults living in real-world settings holds promise for a better understanding of the reliability of previous cross-sectional reports and for the future individualized strategies to combat circadian-associated disease and impaired safety (ie, "chronomedicine").


Asunto(s)
Ciclos de Actividad , Ritmo Circadiano , Melatonina/metabolismo , Sueño , Estudiantes , Adolescente , Factores de Edad , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Saliva/metabolismo , Factores de Tiempo , Adulto Joven
14.
Aerosp Med Hum Perform ; 92(2): 83-91, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33468288

RESUMEN

BACKGROUND: In-flight breaks are used during augmented long-haul flight operations, allowing pilots a sleep opportunity. The U.S. Federal Aviation Administration duty and rest regulations restrict the pilot flying the landing to using the third rest break. It is unclear how effective these restrictions are on pilots ability to obtain sleep. We hypothesized there would be no difference in self-reported sleep, alertness, and fatigue between pilots taking the second vs. third rest breaks.METHODS: Pilots flying augmented operations in two U.S.-based commercial airlines were eligible for the study. Volunteers completed a survey at top-of-descent (TOD), including self-reported in-flight sleep duration, and Samn-Perelli fatigue and Karolinska Sleepiness Scale ratings. We compared the second to third rest break using noninferiority analysis. The influence of time of day (home-base time; HBT) was evaluated in 4-h blocks using repeated measures ANOVA.RESULTS: From 787 flights 500 pilots provided complete data. The second rest break was noninferior to the third break for self-reported sleep duration (1.5 0.7 h vs. 1.4 0.7 h), fatigue (2.0 1.0 vs. 2.9 1.3), and sleepiness (2.6 1.4 vs. 3.8 1.8) at TOD for landing pilots. Measures of sleep duration, fatigue, and sleepiness were influenced by HBT circadian time of day.DISCUSSION: We conclude that self-reported in-flight sleep, fatigue, and sleepiness from landing pilots taking the second in-flight rest break are equivalent to or better than pilots taking the third break. Our findings support providing pilots with choice in taking the second or third in-flight rest break during augmented operations.Gregory KB, Soriano-Smith RN, Lamp ACM, Hilditch CJ, Rempe MJ, Flynn-Evans EE, Belenky GL. Flight crew alertness and sleep relative to timing of in-flight rest periods in long-haul flights. Aerosp Med Hum Perform. 2021; 92(2):8391.


Asunto(s)
Pilotos/estadística & datos numéricos , Descanso , Privación de Sueño/prevención & control , Vigilia , Tolerancia al Trabajo Programado , Adulto , Atención , Fatiga , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Estados Unidos
15.
Sci Rep ; 10(1): 20849, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257712

RESUMEN

Cross-sectional observations have shown that the timing of eating may be important for health-related outcomes. Here we examined the stability of eating timing, using both clock hour and relative circadian time, across one semester (n = 14) at daily and monthly time-scales. At three time points ~ 1 month apart, circadian phase was determined during an overnight in-laboratory visit and eating was photographically recorded for one week to assess timing and composition. Day-to-day stability was measured using the Composite Phase Deviation (deviation from a perfectly regular pattern) and intraclass correlation coefficients (ICC) were used to determine individual stability across months (weekly average compared across months). Day-to-day clock timing of caloric events had poor stability within individuals (~ 3-h variation; ICC = 0.12-0.34). The timing of eating was stable across months (~ 1-h variation, ICCs ranging from 0.54-0.63), but less stable across months when measured relative to circadian timing (ICC = 0.33-0.41). Our findings suggest that though day-to-day variability in the timing of eating has poor stability, the timing of eating measured for a week is stable across months within individuals. This indicates two relevant timescales: a monthly timescale with more stability in eating timing than a daily timescale. Thus, a single day's food documentation may not represent habitual (longer timescale) patterns.


Asunto(s)
Ritmo Circadiano/fisiología , Conducta Alimentaria/fisiología , Comidas/psicología , Estudios Transversales , Ingestión de Alimentos/fisiología , Ingestión de Energía/fisiología , Conducta Alimentaria/psicología , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
16.
Chronobiol Int ; 37(9-10): 1483-1491, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32838563

RESUMEN

Controlled Rest (CR) refers to a short, unscheduled, voluntary nap opportunity taken by pilots on the flight deck as a countermeasure to unanticipated fatigue in flight. This study explores the profile of CR use in a long-haul commercial airline. Forty-four pilots wore actiwatches and filled in an application-based sleep/work diary for approximately 2 weeks resulting in complete records from 239 flights. Timing of sleep periods and flight schedules were analyzed relative to home-base time. Pearson correlations were used to assess the influence of pilot demographics on CR use. A mixed-effects logistic regression was used to analyze the impact of schedule factors on CR. CR was taken on 46% (n = 110) of flights, with 80% (n = 106/133) of all CR attempts (accounting for multiple CR attempts on 23 flights) estimated by actigraphy to have successfully achieved sleep. Average sleep duration during successful rest periods was estimated as 31.7 ± 12.2 min. CR was more frequent on 2-pilot (69%, n = 83) vs. >2-pilot flights (23%, n = 27); return (60%, n = 71) vs. outbound flights (33%, n = 39); night (55%, n = 76) vs. day flights (34%, n = 34); and <10 h (63%, n = 80) vs. >10 h duration flights (27%, n = 30) (all p ≤ 0.001). There was no significant difference for direction of travel (eastbound: 51%, n = 57; westbound: 40%, n = 44; p = .059). Of note, 22% (n = 26) of augmented flights contained both CR and bunk rest. Data from this airline show that CR is most commonly used on flights with 2-pilot crews (<10 h duration) and nighttime flights returning to base. Future studies are required to determine the generalizability of these results to other airlines.


Asunto(s)
Ritmo Circadiano , Tolerancia al Trabajo Programado , Fatiga , Humanos , Descanso , Sueño
17.
Front Physiol ; 11: 254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32317980

RESUMEN

Sleep inertia, the transitional state of reduced alertness and impaired cognitive performance upon waking, is a safety risk for on-call personnel who can be required to perform critical tasks soon after waking. Sleep inertia countermeasures have previously been investigated; however, none have successfully dissipated sleep inertia within the first 15 min following waking. During this time, on-call personnel could already be driving, providing advice, or performing other safety-critical tasks. Exercise has not yet been investigated as a sleep inertia countermeasure but has the potential to stimulate the key physiological mechanisms that occur upon waking, including changes in cerebral blood flow, the cortisol awakening response, and increases in core body temperature. Here, we examine these physiological processes and hypothesize how exercise can stimulate them, positioning exercise as an effective sleep inertia countermeasure. We then propose key considerations for research investigating the efficacy of exercise as a sleep inertia countermeasure, including the need to determine the intensity and duration of exercise required to reduce sleep inertia, as well as testing the effectiveness of exercise across a range of conditions in which the severity of sleep inertia may vary. Finally, practical considerations are identified, including the recommendation that qualitative field-based research be conducted with on-call personnel to determine the potential constraints in utilizing exercise as a sleep inertia countermeasure in real-world scenarios.

18.
Nat Sci Sleep ; 11: 155-165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31692489

RESUMEN

Sleep inertia, or the grogginess felt upon awakening, is associated with significant cognitive performance decrements that dissipate as time awake increases. This impairment in cognitive performance has been observed in both tightly controlled in-laboratory studies and in real-world scenarios. Further, these decrements in performance are exaggerated by prior sleep loss and the time of day in which a person awakens. This review will examine current insights into the causes of sleep inertia, factors that may positively or negatively influence the degree of sleep inertia, the consequences of sleep inertia both in the laboratory and in real-world settings, and lastly discuss potential countermeasures to lessen the impact of sleep inertia.

19.
J Vis Exp ; (150)2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31449253

RESUMEN

Sleep loss and circadian misalignment contribute to a meaningful proportion of operational accidents and incidents. Countermeasures and work scheduling designs aimed at mitigating fatigue are typically evaluated in controlled laboratory environments, but the effectiveness of translating such strategies to operational environments can be challenging to assess. This manuscript summarizes an approach for collecting sleep, circadian, fatigue, and performance data in a complex operational environment. We studied 44 airline pilots over 34 days while they flew a fixed schedule, which included a baseline data collection with 5 days of mid-morning flights, four early flights, four high-workload mid-day flights, and four late flights that landed after midnight. Each work block was separated by 3-4 days of rest. To assess sleep, participants wore a wrist-worn research-validated activity monitor continuously and completed daily sleep diaries. To assess the circadian phase, pilots were asked to collect all urine produced in four or eight hourly bins during the 24 h after each duty block for the assessment of 6-sulfatoxymelatonin (aMT6s), which is a biomarker of the circadian rhythm. To assess subjective fatigue and objective performance, participants were provided with a touch-screen device used to complete the Samn-Perelli Fatigue Scale and Psychomotor Vigilance Task (PVT) during and after each flight, and at waketime, mid-day, and bedtime. Using these methods, it was found that sleep duration was reduced during early starts and late finishes relative to baseline. Circadian phase shifted according to duty schedule, but there was a wide range in the aMT6s peak between individuals on each schedule. PVT performance was worse on the early, high-workload, and late schedules relative to baseline. Overall, the combination of these methods was practical and effective for assessing the influence of sleep loss and circadian phase on fatigue and performance in a complex operational environment.


Asunto(s)
Ritmo Circadiano/fisiología , Recolección de Datos/métodos , Fatiga/fisiopatología , Monitoreo Fisiológico/métodos , Sueño/fisiología , Femenino , Humanos , Masculino , Análisis y Desempeño de Tareas
20.
Chem Senses ; 43(1): 45-51, 2017 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-29045623

RESUMEN

Olfactory sensitivity has traditionally been viewed as a trait that varies according to individual differences but is not expected to change with one's momentary state. Recent research has begun to challenge this position and time of day has been shown to alter detection levels. Links between obesity and the timing of food intake further raise the issue of whether odor detection may vary as a function of circadian processes. To investigate this question, 37 (21 male) adolescents (M age = 13.7 years) took part in a 28-h forced desynchrony (FD) protocol with 17.5 h awake and 10.5 h of sleep, for 7 FD cycles. Odor threshold was measured using Sniffin' Sticks 6 times for each FD cycle (total threshold tests = 42). Circadian phase was determined by intrinsic period derived from dim light melatonin onsets. Odor threshold showed a significant effect of circadian phase, with lowest threshold occurring on average slightly after the onset of melatonin production, or about 1.5○ (approximately 21:08 h). Considerable individual variability was observed, however, peak olfactory acuity never occurred between 80.5○ and 197.5○ (~02:22-10:10 h). These data are the first to show that odor threshold is differentially and consistently influenced by circadian timing, and is not a stable trait. Potential biological relevance for connections between circadian phase and olfactory sensitivity are discussed.


Asunto(s)
Ritmo Circadiano/fisiología , Odorantes , Percepción Olfatoria/fisiología , Umbral Sensorial/fisiología , Adolescente , Niño , Ingestión de Alimentos , Femenino , Humanos , Masculino , Sueño/fisiología , Vigilia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...