Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(5): e0268883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35617346

RESUMEN

Synthetic biology has successfully advanced our ability to design and implement complex, time-varying genetic circuits to control the expression of recombinant proteins. However, these circuits typically require the production of regulatory genes whose only purpose is to coordinate expression of other genes. When designing very small genetic constructs, such as viral genomes, we may want to avoid introducing such auxiliary gene products while nevertheless encoding complex expression dynamics. To this end, here we demonstrate that varying only the placement and strengths of promoters, terminators, and RNase cleavage sites in a computational model of a bacteriophage genome is sufficient to achieve solutions to a variety of basic gene expression patterns. We discover these genetic solutions by computationally evolving genomes to reproduce desired gene expression time-course data. Our approach shows that non-trivial patterns can be evolved, including patterns where the relative ordering of genes by abundance changes over time. We find that some patterns are easier to evolve than others, and comparable expression patterns can be achieved via different genetic architectures. Our work opens up a novel avenue to genome engineering via fine-tuning the balance of gene expression and gene degradation rates.


Asunto(s)
Redes Reguladoras de Genes , Biología Sintética , Expresión Génica , Genes Reguladores , Regiones Promotoras Genéticas
2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845024

RESUMEN

CRISPR-associated Tn7 transposons (CASTs) co-opt cas genes for RNA-guided transposition. CASTs are exceedingly rare in genomic databases; recent surveys have reported Tn7-like transposons that co-opt Type I-F, I-B, and V-K CRISPR effectors. Here, we expand the diversity of reported CAST systems via a bioinformatic search of metagenomic databases. We discover architectures for all known CASTs, including arrangements of the Cascade effectors, target homing modalities, and minimal V-K systems. We also describe families of CASTs that have co-opted the Type I-C and Type IV CRISPR-Cas systems. Our search for non-Tn7 CASTs identifies putative candidates that include a nuclease dead Cas12. These systems shed light on how CRISPR systems have coevolved with transposases and expand the programmable gene-editing toolkit.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Elementos Transponibles de ADN/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Elementos Transponibles de ADN/fisiología , Endonucleasas/genética , Edición Génica , Metagenoma , Metagenómica/métodos , ARN Guía de Kinetoplastida/genética , Transposasas/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-35445164

RESUMEN

Gene clusters are sets of co-localized, often contiguous genes that together perform specific functions, many of which are relevant to biotechnology. There is a need for software tools that can extract candidate gene clusters from vast amounts of available genomic data. Therefore, we developed Opfi: a modular pipeline for identification of arbitrary gene clusters in assembled genomic or metagenomic sequences. Opfi contains functions for annotation, de-deduplication, and visualization of putative gene clusters. It utilizes a customizable rule-based filtering approach for selection of candidate systems that adhere to user-defined criteria. Opfi is implemented in Python, and is available on the Python Package Index and on Bioconda (Grüning et al., 2018).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA