Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 376(6596): eabe1505, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35617398

RESUMEN

In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR) dependence leads to clinically aggressive tumors with few therapeutic options. We used ATAC-seq (assay for transposase-accessible chromatin sequencing), RNA-seq, and DNA sequencing to investigate 22 organoids, six patient-derived xenografts, and 12 cell lines. We identified the well-characterized AR-dependent and neuroendocrine subtypes, as well as two AR-negative/low groups: a Wnt-dependent subtype, and a stem cell-like (SCL) subtype driven by activator protein-1 (AP-1) transcription factors. We used transcriptomic signatures to classify 366 patients, which showed that SCL is the second most common subtype of CRPC after AR-dependent. Our data suggest that AP-1 interacts with the YAP/TAZ and TEAD proteins to maintain subtype-specific chromatin accessibility and transcriptomic landscapes in this group. Together, this molecular classification reveals drug targets and can potentially guide therapeutic decisions.


Asunto(s)
Cromatina , Terapia Molecular Dirigida , Neoplasias de la Próstata Resistentes a la Castración , Línea Celular Tumoral , Cromatina/genética , Perfilación de la Expresión Génica , Humanos , Masculino , Células Madre Neoplásicas/clasificación , Células Madre Neoplásicas/metabolismo , Organoides/metabolismo , Organoides/patología , Neoplasias de la Próstata Resistentes a la Castración/clasificación , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593893

RESUMEN

Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."


Asunto(s)
Región CA1 Hipocampal/patología , Región CA3 Hipocampal/patología , Envejecimiento Cognitivo , Células Piramidales/patología , Sinapsis/patología , Animales , Masculino , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344
3.
J Natl Cancer Inst ; 112(1): 107-110, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504684

RESUMEN

Chemotherapy and radiation therapy are the foundations of adjuvant therapy for early-stage breast cancer. As a complication of cytotoxic regimens, breast cancer patients are at risk for therapy-related myeloid neoplasms (t-MNs). These t-MNs are commonly refractory to antileukemic therapies and result in poor patient outcomes. We previously demonstrated that somatic mutations in leukemia-related genes are present in the tumor-infiltrating leukocytes (TILeuks) of a subset of early breast cancers. Here, we performed genomic analysis of microdissected breast cancer tumor cells and TILeuks from seven breast cancer patients who subsequently developed leukemia. In four patients, mutations present in the leukemia were detected in breast cancer TILeuks. This finding suggests that TILeuks in the primary breast cancer may harbor the ancestor of the future leukemogenic clone. Additional research is warranted to ascertain whether infiltrating mutant TILeuks could constitute a biomarker for the development of t-MN and to determine the functional consequences of mutant TILeuks.


Asunto(s)
Neoplasias de la Mama/sangre , Neoplasias de la Mama/diagnóstico , Evolución Clonal , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/etiología , Hematopoyesis , Leucocitos/patología , Neoplasias Primarias Secundarias/diagnóstico , Neoplasias Primarias Secundarias/etiología , Evolución Clonal/genética , Femenino , Hematopoyesis/genética , Humanos
4.
Dose Response ; 16(3): 1559325818798282, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30228814

RESUMEN

Non-monotonic dose response curves (NMDRCs) occur in cells, tissues, animals and human populations in response to nutrients, vitamins, pharmacological compounds, hormones and endocrine disrupting chemicals (EDCs). Yet, regulatory agencies have argued that NMDRCs are not common, are not found for adverse outcomes, and are not relevant for regulation of EDCs. Under the linear dose response model, high dose testing is used to extrapolate to lower doses that are anticipated to be 'safe' for human exposures. NMDRCs that occur below the toxicological no-observed-adverse-effect level (NOAEL) would falsify a fundamental assumption, that high dose hazards can be used to predict low dose safety. In this commentary, we provide examples of NMDRCs and discuss how their presence in different portions of the dose response curve might affect regulatory decisions. We provide evidence that NMDRCs do occur below the NOAEL dose, and even below the 'safe' reference dose, for chemicals such as resveratrol, permethrin, chlorothalonil, and phthalates such as DEHP. We also briefly discuss the recent CLARITY-BPA study, which reported mammary adenocarcinomas only in rats exposed to the lowest BPA dose. We conclude our commentary with suggestions for how NMDRCs should be acknowledged and utilized to improve regulatory toxicity testing and in the calculation of reference doses that are public health protective.

7.
Cancer Cell ; 33(1): 29-43.e7, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29249691

RESUMEN

Genetic and functional studies underscore the central role of JAK/STAT signaling in myeloproliferative neoplasms (MPNs). However, the mechanisms that mediate transformation in MPNs are not fully delineated, and clinically utilized JAK inhibitors have limited ability to reduce disease burden or reverse myelofibrosis. Here we show that MPN progenitor cells are characterized by marked alterations in gene regulation through differential enhancer utilization, and identify nuclear factor κB (NF-κB) signaling as a key pathway activated in malignant and non-malignant cells in MPN. Inhibition of BET bromodomain proteins attenuated NF-κB signaling and reduced cytokine production in vivo. Most importantly, combined JAK/BET inhibition resulted in a marked reduction in the serum levels of inflammatory cytokines, reduced disease burden, and reversed bone marrow fibrosis in vivo.


Asunto(s)
Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Trastornos Mieloproliferativos/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Janus Quinasa 2/genética , Ratones Transgénicos , Mutación/efectos de los fármacos , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
8.
Cell Stem Cell ; 21(4): 489-501.e7, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28965767

RESUMEN

JAK1 is a critical effector of pro-inflammatory cytokine signaling and plays important roles in immune function, while abnormal JAK1 activity has been linked to immunological and neoplastic diseases. Specific functions of JAK1 in the context of hematopoiesis, and specifically within hematopoietic stem cells (HSCs), have not clearly been delineated. Here, we show that conditional Jak1 loss in HSCs reduces their self-renewal and markedly alters lymphoid/myeloid differentiation in vivo. Jak1-deficient HSCs exhibit decreased competitiveness in vivo and are unable to rescue hematopoiesis in the setting of myelosuppression. They exhibit increased quiescence, an inability to enter the cell cycle in response to hematopoietic stress, and a marked reduction in cytokine sensing, including in response to type I interferons and IL-3. Moreover, Jak1 loss is not fully rescued by expression of a constitutively active Jak2 allele. Together, these data highlight an essential role for Jak1 in HSC homeostasis and stress responses.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Interleucina-3/metabolismo , Janus Quinasa 1/metabolismo , Estrés Fisiológico , Alelos , Animales , Trasplante de Médula Ósea , Ciclo Celular , Diferenciación Celular , Activación Enzimática , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Terapia de Inmunosupresión , Interferón Tipo I/metabolismo , Ratones Noqueados , Células Mieloides/metabolismo , Transducción de Señal
9.
Cogent Med ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-31231671

RESUMEN

Developmental exposures to bisphenol A (BPA), an estrogen receptor agonist, can disrupt development of the female reproductive tract in rodents and non-human primates. Due to an increased public knowledge of negative health effects associated with BPA exposure, BPA has begun to be phased out of many consumer products and in some cases it has been replaced with structurally similar compounds including bisphenol S (BPS). This study examined CD-1 mice exposed to a low dose of BPS during early development (200 µg/kg/day from gestational day 8 until postnatal day 19). BPS altered expression of estrogen-responsive genes in both the uterus and ovary, and induced increases in ovarian follicular development in pre-pubertal females evaluated at postnatal day 22. Prior studies have revealed that developmental exposures to environmental chemicals including BPA alter the response of animals to hormonal or carcinogen challenges experienced later in life. To evaluate whether early life exposures to BPS alter responses of females to an estrogen challenge, additional females were exposed to ethinyl estradiol from postnatal day 19 through postnatal day 21. BPS-treated females responded abnormally to this estrogen challenge, displaying heightened responses in the uterus and diminished responses in the ovary. Although additional studies are needed to characterize the mechanisms by which BPS alters the female reproductive tract, this pilot study provides evidence that a common BPA replacement chemical may have endocrine disrupting properties.

10.
PLoS Genet ; 12(3): e1005918, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27019121

RESUMEN

Germline stem cell (GSC) self-renewal and differentiation are required for the sustained production of gametes. GSC differentiation in Drosophila oogenesis requires expression of the histone methyltransferase dSETDB1 by the somatic niche, however its function in this process is unknown. Here, we show that dSETDB1 is required for the expression of a Wnt ligand, Drosophila Wingless type mouse mammary virus integration site number 4 (dWnt4) in the somatic niche. dWnt4 signaling acts on the somatic niche cells to facilitate their encapsulation of the GSC daughter, which serves as a differentiation cue. dSETDB1 is known to repress transposable elements (TEs) to maintain genome integrity. Unexpectedly, we found that independent upregulation of TEs also downregulated dWnt4, leading to GSC differentiation defects. This suggests that dWnt4 expression is sensitive to the presence of TEs. Together our results reveal a chromatin-transposon-Wnt signaling axis that regulates stem cell fate.


Asunto(s)
Diferenciación Celular/genética , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Glicoproteínas/genética , Oogénesis/genética , Proteínas Wnt/genética , Animales , Cromatina/genética , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Glicoproteínas/biosíntesis , N-Metiltransferasa de Histona-Lisina , Humanos , Ratones , Células Madre/metabolismo , Proteínas Wnt/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA