Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 16(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36579626

RESUMEN

Accurate predictions of the pathogenicity of mutations associated with genetic diseases are key to the success of precision medicine. Inherited missense mutations in the myocilin (MYOC) gene, within its olfactomedin (OLF) domain, constitute the strongest genetic link to primary open-angle glaucoma via a toxic gain of function, and thus MYOC is an attractive precision-medicine target. However, not all mutations in MYOC cause glaucoma, and common variants are expected to be neutral polymorphisms. The Genome Aggregation Database (gnomAD) lists ∼100 missense variants documented within OLF, all of which are relatively rare (allele frequency <0.001%) and nearly all are of unknown pathogenicity. To distinguish disease-causing OLF variants from benign OLF variants, we first characterized the most prevalent population-based variants using a suite of cellular and biophysical assays, and identified two variants with features of aggregation-prone familial disease variants. Next, we considered all available biochemical and clinical data to demonstrate that pathogenic and benign variants can be differentiated statistically based on a single metric: the thermal stability of OLF. Our results motivate genotyping MYOC in patients for clinical monitoring of this widespread, painless and irreversible ocular disease.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma/genética , Glaucoma/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Mutación/genética
2.
ACS Omega ; 7(26): 22906-22914, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35811930

RESUMEN

The non-native oxidation of horse heart myoglobin with hydrogen peroxide produces compound II which autoreduces by utilizing an internal oxidation site. Here, we utilize full UV-visible time-dependent kinetics with global kinetic singular value decomposition analysis to explore the mechanism and uncover more detail about the high-valent heme spectral features. By varying the hydrogen peroxide and myoglobin concentration, we were able to uncover more detailed spectra of myoglobin compound II and the autoreduction rate under several different pH conditions. The compound II spectra demonstrate pH-dependent features with an inflection point around pH 5.7 ± 0.1. The rate of autoreduction of compound II, k 2, increases with lower pH with a half-power proton dependence and no indication of a pK a > 3.9 ± 0.2, indicating that the autoreduction is still dependent on the protonation of the ferryl oxo species. The k 2 also demonstrates both hydrogen peroxide and myoglobin dependency. At myoglobin concentrations greater than 6.6 µM, the k 2 is myoglobin-independent, but for lower concentrations, a pH-sensitive concentration dependence is seen.

3.
J Biol Inorg Chem ; 27(6): 553-564, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35831671

RESUMEN

Myocilin is secreted from trabecular meshwork cells to an eponymous extracellular matrix that is critical for maintaining intraocular pressure. Missense mutations found in the myocilin olfactomedin domain (OLF) lead to intracellular myocilin misfolding and are causative for the heritable form of early-onset glaucoma. The OLF domain contains a unique internal, hetero-dinuclear calcium site. Here, we tested the hypothesis that calcium dysregulation causes wild-type (WT) myocilin misfolding reminiscent of that observed for disease variants. Using two cellular models expressing WT myocilin, we show that the Ca2+ ATPase channel blocker thapsigargin inhibits WT myocilin secretion. Intracellular WT myocilin is at least partly insoluble and aggregated in the endoplasmic reticulum (ER), and stains positively with an amyloid dye. By comparing the effect of thapsigargin on WT myocilin to that on a de novo secretion-competent Ca2+-free variant D478S, we discern that non-secretion of WT myocilin is due initially to calcium dysregulation, and is potentiated further by resultant ER stress. In E. coli, depletion of calcium leads to recombinant expression of misfolded isolated WT OLF but the D478S variant is still produced as a folded monomer. Treatment of cells expressing a double mutant composed of D478S and either disease variants P370L or Y437H with thapsigargin promotes its misfolding and aggregation, demonstrating the limits of D478S to correct secretion defects. Taken together, the heterodinuclear calcium site is a liability for proper folding of myocilin. Our study suggests a molecular mechanism by which WT myocilin misfolding may contribute broadly to glaucoma-associated ER stress. This study explores the effect of calcium depletion on myocilin olfactomedin domain folding.


Asunto(s)
Calcio , Glaucoma , Proteínas del Citoesqueleto , Escherichia coli/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Glaucoma/genética , Glaucoma/metabolismo , Glicoproteínas , Humanos , Mutación , Tapsigargina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...