Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Commun ; 14(1): 7927, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040769

RESUMEN

Sleep and depression have a complex, bidirectional relationship, with sleep-associated alterations in brain dynamics and structure impacting a range of symptoms and cognitive abilities. Previous work describing these relationships has provided an incomplete picture by investigating only one or two types of sleep measures, depression, or neuroimaging modalities in parallel. We analyze the correlations between brainwide neural signatures of sleep, cognition, and depression in task and resting-state data from over 30,000 individuals from the UK Biobank and Human Connectome Project. Neural signatures of insomnia and depression are negatively correlated with those of sleep duration measured by accelerometer in the task condition but positively correlated in the resting-state condition. Our results show that resting-state neural signatures of insomnia and depression resemble that of rested wakefulness. This is further supported by our finding of hypoconnectivity in task but hyperconnectivity in resting-state data in association with insomnia and depression. These observations dispute conventional assumptions about the neurofunctional manifestations of hyper- and hypo-somnia, and may explain inconsistent findings in the literature.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sueño , Cognición
2.
Transl Psychiatry ; 13(1): 210, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328465

RESUMEN

Advancements in artificial intelligence (AI) are enabling the development of clinical support tools (CSTs) in psychiatry to facilitate the review of patient data and inform clinical care. To promote their successful integration and prevent over-reliance, it is important to understand how psychiatrists will respond to information provided by AI-based CSTs, particularly if it is incorrect. We conducted an experiment to examine psychiatrists' perceptions of AI-based CSTs for treating major depressive disorder (MDD) and to determine whether perceptions interacted with the quality of CST information. Eighty-three psychiatrists read clinical notes about a hypothetical patient with MDD and reviewed two CSTs embedded within a single dashboard: the note's summary and a treatment recommendation. Psychiatrists were randomised to believe the source of CSTs was either AI or another psychiatrist, and across four notes, CSTs provided either correct or incorrect information. Psychiatrists rated the CSTs on various attributes. Ratings for note summaries were less favourable when psychiatrists believed the notes were generated with AI as compared to another psychiatrist, regardless of whether the notes provided correct or incorrect information. A smaller preference for psychiatrist-generated information emerged in ratings of attributes that reflected the summary's accuracy or its inclusion of important information from the full clinical note. Ratings for treatment recommendations were also less favourable when their perceived source was AI, but only when recommendations were correct. There was little evidence that clinical expertise or familiarity with AI impacted results. These findings suggest that psychiatrists prefer human-derived CSTs. This preference was less pronounced for ratings that may have prompted a deeper review of CST information (i.e. a comparison with the full clinical note to evaluate the summary's accuracy or completeness, assessing an incorrect treatment recommendation), suggesting a role of heuristics. Future work should explore other contributing factors and downstream implications for integrating AI into psychiatric care.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Trastorno Depresivo Mayor , Psiquiatría , Humanos , Inteligencia Artificial , Depresión , Trastorno Depresivo Mayor/tratamiento farmacológico
3.
BMJ Open ; 13(4): e069255, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37185650

RESUMEN

INTRODUCTION: Managing violence or aggression is an ongoing challenge in emergency psychiatry. Many patients identified as being at risk do not go on to become violent or aggressive. Efforts to automate the assessment of risk involve training machine learning (ML) models on data from electronic health records (EHRs) to predict these behaviours. However, no studies to date have examined which patient groups may be over-represented in false positive predictions, despite evidence of social and clinical biases that may lead to higher perceptions of risk in patients defined by intersecting features (eg, race, gender). Because risk assessment can impact psychiatric care (eg, via coercive measures, such as restraints), it is unclear which patients might be underserved or harmed by the application of ML. METHODS AND ANALYSIS: We pilot a computational ethnography to study how the integration of ML into risk assessment might impact acute psychiatric care, with a focus on how EHR data is compiled and used to predict a risk of violence or aggression. Our objectives include: (1) evaluating an ML model trained on psychiatric EHRs to predict violent or aggressive incidents for intersectional bias; and (2) completing participant observation and qualitative interviews in an emergency psychiatric setting to explore how social, clinical and structural biases are encoded in the training data. Our overall aim is to study the impact of ML applications in acute psychiatry on marginalised and underserved patient groups. ETHICS AND DISSEMINATION: The project was approved by the research ethics board at The Centre for Addiction and Mental Health (053/2021). Study findings will be presented in peer-reviewed journals, conferences and shared with service users and providers.


Asunto(s)
Pacientes Internos , Psiquiatría , Humanos , Pacientes Internos/psicología , Violencia/prevención & control , Violencia/psicología , Agresión/psicología , Antropología Cultural
4.
Cell Rep ; 42(3): 112200, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36867532

RESUMEN

Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.


Asunto(s)
Tálamo , Vigilia , Ratones , Animales , Tálamo/fisiología , Sueño/fisiología , Núcleos Talámicos/fisiología , Percepción , Corteza Cerebral/fisiología
5.
Psychol Med ; 53(2): 438-445, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34008483

RESUMEN

BACKGROUND: Our understanding of major depression is complicated by substantial heterogeneity in disease presentation, which can be disentangled by data-driven analyses of depressive symptom dimensions. We aimed to determine the clinical portrait of such symptom dimensions among individuals in the community. METHODS: This cross-sectional study consisted of 25 261 self-reported White UK Biobank participants with major depression. Nine questions from the UK Biobank Mental Health Questionnaire encompassing depressive symptoms were decomposed into underlying factors or 'symptom dimensions' via factor analysis, which were then tested for association with psychiatric diagnoses and polygenic risk scores for major depressive disorder (MDD), bipolar disorder and schizophrenia. Replication was performed among 655 self-reported non-White participants, across sexes, and among 7190 individuals with an ICD-10 code for MDD from linked inpatient or primary care records. RESULTS: Four broad symptom dimensions were identified, encompassing negative cognition, functional impairment, insomnia and atypical symptoms. These dimensions replicated across ancestries, sexes and individuals with inpatient or primary care MDD diagnoses, and were also consistent among 43 090 self-reported White participants with undiagnosed self-reported depression. Every dimension was associated with increased risk of nearly every psychiatric diagnosis and polygenic risk score. However, while certain psychiatric diagnoses were disproportionately associated with specific symptom dimensions, the three polygenic risk scores did not show the same specificity of associations. CONCLUSIONS: An analysis of questionnaire data from a large community-based cohort reveals four replicable symptom dimensions of depression with distinct clinical, but not genetic, correlates.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/complicaciones , Depresión/genética , Estudios Transversales , Predisposición Genética a la Enfermedad , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/epidemiología , Trastorno Bipolar/complicaciones , Herencia Multifactorial
6.
Int J Popul Data Sci ; 8(4): 2142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38419825

RESUMEN

Introduction: Around the world, many organisations are working on ways to increase the use, sharing, and reuse of person-level data for research, evaluation, planning, and innovation while ensuring that data are secure and privacy is protected. As a contribution to broader efforts to improve data governance and management, in 2020 members of our team published 12 minimum specification essential requirements (min specs) to provide practical guidance for organisations establishing or operating data trusts and other forms of data infrastructure. Approach and Aims: We convened an international team, consisting mostly of participants from Canada and the United States of America, to test and refine the original 12 min specs. Twenty-three (23) data-focused organisations and initiatives recorded the various ways they address the min specs. Sub-teams analysed the results, used the findings to make improvements to the min specs, and identified materials to support organisations/initiatives in addressing the min specs. Results: Analyses and discussion led to an updated set of 15 min specs covering five categories: one min spec for Legal, five for Governance, four for Management, two for Data Users, and three for Stakeholder & Public Engagement. Multiple changes were made to make the min specs language more technically complete and precise. The updated set of 15 min specs has been integrated into a Canadian national standard that, to our knowledge, is the first to include requirements for public engagement and Indigenous Data Sovereignty. Conclusions: The testing and refinement of the min specs led to significant additions and improvements. The min specs helped the 23 organisations/initiatives involved in this project communicate and compare how they achieve responsible and trustworthy data governance and management. By extension, the min specs, and the Canadian national standard based on them, are likely to be useful for other data-focused organisations and initiatives.


Asunto(s)
Privacidad , Humanos , Estados Unidos , Canadá
7.
Geroscience ; 44(4): 2291-2303, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35553346

RESUMEN

Investigating effects of aging on neurophysiological mechanisms underlying working memory provides a better understanding of potential targets for brain intervention to prevent cognitive decline. Theta-gamma coupling (TGC) indexes the ability to order information processed during working memory tasks. Frontal theta event-related synchronization (ERS) and parietal alpha event-related desynchronization (ERD) index cognitive control and interference inhibition, respectively. Relative contributions of TGC, theta ERS, and alpha ERD in relation to stimulus presentation are not characterized. Further, differential effect of normal aging on pre- or post-stimulus processes is unknown. Electroencephalography was recorded in 66 younger and 41 older healthy participants while performing 3-back working memory task. We assessed relationships between 3-back task performance and each of post-stimulus TGC, pre-stimulus parietal alpha ERD, and pre-stimulus frontal theta ERS in each age group. While older adults performed worse on 3-back task than younger adults, TGC, alpha ERD, or theta ERS did not differ between the two groups. TGC was positively associated with 3-back performance in both age groups; pre-stimulus alpha ERD was associated with performance among younger adults; and pre-stimulus theta ERS was not associated with performance in either group. Our findings suggest that both pre-stimulus interference inhibition and post-stimulus ordering of information are important for working memory in younger adults. In contrast, performance in older adults appears to depend only on post-stimulus ordering of information. These specific contributions of neurophysiological resources may explain the poorer performance of older adults and suggest different targets to enhance working memory in age groups.


Asunto(s)
Disfunción Cognitiva , Memoria a Corto Plazo , Humanos , Anciano , Memoria a Corto Plazo/fisiología , Electroencefalografía , Envejecimiento/fisiología , Cognición/fisiología
8.
Neuroinformatics ; 20(3): 793-809, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35267146

RESUMEN

The challenge of defining and cataloging the building blocks of the brain requires a standardized approach to naming neurons and organizing knowledge about their properties. The US Brain Initiative Cell Census Network, Human Cell Atlas, Blue Brain Project, and others are generating vast amounts of data and characterizing large numbers of neurons throughout the nervous system. The neuroscientific literature contains many neuron names (e.g. parvalbumin-positive interneuron or layer 5 pyramidal cell) that are commonly used and generally accepted. However, it is often unclear how such common usage types relate to many evidence-based types that are proposed based on the results of new techniques. Further, comparing different types across labs remains a significant challenge. Here, we propose an interoperable knowledge representation, the Neuron Phenotype Ontology (NPO), that provides a standardized and automatable approach for naming cell types and normalizing their constituent phenotypes using identifiers from community ontologies as a common language. The NPO provides a framework for systematically organizing knowledge about cellular properties and enables interoperability with existing neuron naming schemes. We evaluate the NPO by populating a knowledge base with three independent cortical neuron classifications derived from published data sets that describe neurons according to molecular, morphological, electrophysiological, and synaptic properties. Competency queries to this knowledge base demonstrate that the NPO knowledge model enables interoperability between the three test cases and neuron names commonly used in the literature.


Asunto(s)
Neuronas , Parvalbúminas , Humanos , Interneuronas , Fenotipo
9.
BMJ Health Care Inform ; 29(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35012941

RESUMEN

OBJECTIVES: Fairness is a core concept meant to grapple with different forms of discrimination and bias that emerge with advances in Artificial Intelligence (eg, machine learning, ML). Yet, claims to fairness in ML discourses are often vague and contradictory. The response to these issues within the scientific community has been technocratic. Studies either measure (mathematically) competing definitions of fairness, and/or recommend a range of governance tools (eg, fairness checklists or guiding principles). To advance efforts to operationalise fairness in medicine, we synthesised a broad range of literature. METHODS: We conducted an environmental scan of English language literature on fairness from 1960-July 31, 2021. Electronic databases Medline, PubMed and Google Scholar were searched, supplemented by additional hand searches. Data from 213 selected publications were analysed using rapid framework analysis. Search and analysis were completed in two rounds: to explore previously identified issues (a priori), as well as those emerging from the analysis (de novo). RESULTS: Our synthesis identified 'Three Pillars for Fairness': transparency, impartiality and inclusion. We draw on these insights to propose a multidimensional conceptual framework to guide empirical research on the operationalisation of fairness in healthcare. DISCUSSION: We apply the conceptual framework generated by our synthesis to risk assessment in psychiatry as a case study. We argue that any claim to fairness must reflect critical assessment and ongoing social and political deliberation around these three pillars with a range of stakeholders, including patients. CONCLUSION: We conclude by outlining areas for further research that would bolster ongoing commitments to fairness and health equity in healthcare.


Asunto(s)
Equidad en Salud , Inteligencia Artificial , Atención a la Salud , Humanos , Aprendizaje Automático , Medición de Riesgo
10.
Neuron ; 110(4): 600-612, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34914921

RESUMEN

As neuroscience projects increase in scale and cross international borders, different ethical principles, national and international laws, regulations, and policies for data sharing must be considered. These concerns are part of what is collectively called data governance. Whereas neuroscience data transcend borders, data governance is typically constrained within geopolitical boundaries. An international data governance framework and accompanying infrastructure can assist investigators, institutions, data repositories, and funders with navigating disparate policies. Here, we propose principles and operational considerations for how data governance in neuroscience can be navigated at an international scale and highlight gaps, challenges, and opportunities in a global brain data ecosystem. We consider how to approach data governance in a way that balances data protection requirements and the need for open science, so as to promote international collaboration through federated constructs such as the International Brain Initiative (IBI).


Asunto(s)
Ecosistema , Neurociencias , Seguridad Computacional , Difusión de la Información
11.
PLoS Med ; 18(10): e1003782, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34637446

RESUMEN

BACKGROUND: Sleep problems are both symptoms of and modifiable risk factors for many psychiatric disorders. Wrist-worn accelerometers enable objective measurement of sleep at scale. Here, we aimed to examine the association of accelerometer-derived sleep measures with psychiatric diagnoses and polygenic risk scores in a large community-based cohort. METHODS AND FINDINGS: In this post hoc cross-sectional analysis of the UK Biobank cohort, 10 interpretable sleep measures-bedtime, wake-up time, sleep duration, wake after sleep onset, sleep efficiency, number of awakenings, duration of longest sleep bout, number of naps, and variability in bedtime and sleep duration-were derived from 7-day accelerometry recordings across 89,205 participants (aged 43 to 79, 56% female, 97% self-reported white) taken between 2013 and 2015. These measures were examined for association with lifetime inpatient diagnoses of major depressive disorder, anxiety disorders, bipolar disorder/mania, and schizophrenia spectrum disorders from any time before the date of accelerometry, as well as polygenic risk scores for major depression, bipolar disorder, and schizophrenia. Covariates consisted of age and season at the time of the accelerometry recording, sex, Townsend deprivation index (an indicator of socioeconomic status), and the top 10 genotype principal components. We found that sleep pattern differences were ubiquitous across diagnoses: each diagnosis was associated with a median of 8.5 of the 10 accelerometer-derived sleep measures, with measures of sleep quality (for instance, sleep efficiency) generally more affected than mere sleep duration. Effect sizes were generally small: for instance, the largest magnitude effect size across the 4 diagnoses was ß = -0.11 (95% confidence interval -0.13 to -0.10, p = 3 × 10-56, FDR = 6 × 10-55) for the association between lifetime inpatient major depressive disorder diagnosis and sleep efficiency. Associations largely replicated across ancestries and sexes, and accelerometry-derived measures were concordant with self-reported sleep properties. Limitations include the use of accelerometer-based sleep measurement and the time lag between psychiatric diagnoses and accelerometry. CONCLUSIONS: In this study, we observed that sleep pattern differences are a transdiagnostic feature of individuals with lifetime mental illness, suggesting that they should be considered regardless of diagnosis. Accelerometry provides a scalable way to objectively measure sleep properties in psychiatric clinical research and practice, even across tens of thousands of individuals.


Asunto(s)
Acelerometría/instrumentación , Bancos de Muestras Biológicas , Trastornos Mentales/fisiopatología , Sueño/fisiología , Adulto , Anciano , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Herencia Multifactorial , Reproducibilidad de los Resultados , Factores de Riesgo , Autoinforme , Reino Unido
12.
Neurosci Biobehav Rev ; 126: 213-235, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33766672

RESUMEN

As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.


Asunto(s)
Roedores , Tálamo , Animales , Vías Nerviosas , Neuronas , Corteza Somatosensorial , Sinapsis
13.
Proc Natl Acad Sci U S A ; 117(6): 3192-3202, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31974304

RESUMEN

The binding of GABA (γ-aminobutyric acid) to extrasynaptic GABAA receptors generates tonic inhibition that acts as a powerful modulator of cortical network activity. Despite GABA being present throughout the extracellular space of the brain, previous work has shown that GABA may differentially modulate the excitability of neuron subtypes according to variation in chloride gradient. Here, using biophysically detailed neuron models, we predict that tonic inhibition can differentially modulate the excitability of neuron subtypes according to variation in electrophysiological properties. Surprisingly, tonic inhibition increased the responsiveness (or gain) in models with features typical for somatostatin interneurons but decreased gain in models with features typical for parvalbumin interneurons. Patch-clamp recordings from cortical interneurons supported these predictions, and further in silico analysis was then performed to seek a putative mechanism underlying gain modulation. We found that gain modulation in models was dependent upon the magnitude of tonic current generated at depolarized membrane potential-a property associated with outward rectifying GABAA receptors. Furthermore, tonic inhibition produced two biophysical changes in models of relevance to neuronal excitability: 1) enhanced action potential repolarization via increased current flow into the dendritic compartment, and 2) reduced activation of voltage-dependent potassium channels. Finally, we show theoretically that reduced potassium channel activation selectively increases gain in models possessing action potential dynamics typical for somatostatin interneurons. Potassium channels in parvalbumin-type models deactivate rapidly and are unavailable for further modulation. These findings show that GABA can differentially modulate interneuron excitability and suggest a mechanism through which this occurs in silico via differences of intrinsic electrophysiological properties.


Asunto(s)
Corteza Cerebral , Interneuronas , Inhibición Neural/fisiología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/fisiología , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/fisiología , Cinética , Ratones , Modelos Neurológicos , Técnicas de Placa-Clamp
14.
PLoS Comput Biol ; 15(5): e1006753, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31095552

RESUMEN

Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are central components in the flow of sensory information between the periphery and the cerebral cortex, and participate in the dynamic regulation of thalamocortical states including wakefulness and sleep. This property is reflected at the cellular level by the ability to generate action potentials in two distinct firing modes, called tonic firing and low-threshold bursting. Although the general properties of TC neurons are known, we still lack a detailed characterization of their morphological and electrical properties in the VB thalamus. The aim of this study was to build biophysically-detailed models of VB TC neurons explicitly constrained with experimental data from rats. We recorded the electrical activity of VB neurons (N = 49) and reconstructed morphologies in 3D (N = 50) by applying standardized protocols. After identifying distinct electrical types, we used a multi-objective optimization to fit single neuron electrical models (e-models), which yielded multiple solutions consistent with the experimental data. The models were tested for generalization using electrical stimuli and neuron morphologies not used during fitting. A local sensitivity analysis revealed that the e-models are robust to small parameter changes and that all the parameters were constrained by one or more features. The e-models, when tested in combination with different morphologies, showed that the electrical behavior is substantially preserved when changing dendritic structure and that the e-models were not overfit to a specific morphology. The models and their analysis show that automatic parameter search can be applied to capture complex firing behavior, such as co-existence of tonic firing and low-threshold bursting over a wide range of parameter sets and in combination with different neuron morphologies.


Asunto(s)
Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Animales , Fenómenos Biofísicos/fisiología , Biofisica , Corteza Cerebral/fisiología , Dendritas , Femenino , Masculino , Modelos Neurológicos , Ratas , Ratas Wistar , Sueño/fisiología , Núcleos Talámicos Ventrales/fisiología , Vigilia/fisiología
15.
Ann Neurol ; 85(4): 514-525, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30779207

RESUMEN

OBJECTIVE: To elucidate the biophysical basis underlying the distinct and severe clinical presentation in patients with the recurrent missense SCN1A variant, p.Thr226Met. Patients with this variant show a well-defined genotype-phenotype correlation and present with developmental and early infantile epileptic encephalopathy that is far more severe than typical SCN1A Dravet syndrome. METHODS: Whole cell patch clamp and dynamic action potential clamp were used to study T226M Nav 1.1 channels expressed in mammalian cells. Computational modeling was used to explore the neuronal scale mechanisms that account for altered action potential firing. RESULTS: T226M channels exhibited hyperpolarizing shifts of the activation and inactivation curves and enhanced fast inactivation. Dynamic action potential clamp hybrid simulation showed that model neurons containing T226M conductance displayed a left shift in rheobase relative to control. At current stimulation levels that produced repetitive action potential firing in control model neurons, depolarization block and cessation of action potential firing occurred in T226M model neurons. Fully computationally simulated neuron models recapitulated the findings from dynamic action potential clamp and showed that heterozygous T226M models were also more susceptible to depolarization block. INTERPRETATION: From a biophysical perspective, the T226M mutation produces gain of function. Somewhat paradoxically, our data suggest that this gain of function would cause interneurons to more readily develop depolarization block. This "functional dominant negative" interaction would produce a more profound disinhibition than seen with haploinsufficiency that is typical of Dravet syndrome and could readily explain the more severe phenotype of patients with T226M mutation. Ann Neurol 2019;85:514-525.


Asunto(s)
Epilepsias Mioclónicas/genética , Mutación con Ganancia de Función/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Espasmos Infantiles/genética , Animales , Células CHO , Cricetulus , Bases de Datos Genéticas , Epilepsias Mioclónicas/diagnóstico , Humanos , Espasmos Infantiles/diagnóstico
16.
Front Neuroinform ; 11: 27, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28469570

RESUMEN

Large models of complex neuronal circuits require specifying numerous parameters, with values that often need to be extracted from the literature, a tedious and error-prone process. To help establishing shareable curated corpora of annotations, we have developed a literature curation framework comprising an annotation format, a Python API (NeuroAnnotation Toolbox; NAT), and a user-friendly graphical interface (NeuroCurator). This framework allows the systematic annotation of relevant statements and model parameters. The context of the annotated content is made explicit in a standard way by associating it with ontological terms (e.g., species, cell types, brain regions). The exact position of the annotated content within a document is specified by the starting character of the annotated text, or the number of the figure, the equation, or the table, depending on the context. Alternatively, the provenance of parameters can also be specified by bounding boxes. Parameter types are linked to curated experimental values so that they can be systematically integrated into models. We demonstrate the use of this approach by releasing a corpus describing different modeling parameters associated with thalamo-cortical circuitry. The proposed framework supports a rigorous management of large sets of parameters, solving common difficulties in their traceability. Further, it allows easier classification of literature information and more efficient and systematic integration of such information into models and analyses.

17.
Front Neurosci ; 10: 419, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27679558

RESUMEN

Neuroscience and molecular biology have been generating large datasets over the past years that are reshaping how research is being conducted. In their wake, open data sharing has been singled out as a major challenge for the future of research. We conducted a comparative study of citations of data publications in both fields, showing that the average publication tagged with a data-related term by the NCBI MeSH (Medical Subject Headings) curators achieves a significantly larger citation impact than the average in either field. We introduce a new metric, the data article citation index (DAC-index), to identify the most prolific authors among those data-related publications. The study is fully reproducible from an executable Rmd (R Markdown) script together with all the citation datasets. We hope these results can encourage authors to more openly publish their data.

20.
Front Neuroanat ; 9: 66, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074781

RESUMEN

Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...