Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(7): 1304-1320.e16, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38382526

RESUMEN

Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins. Meanwhile, CRLs employ assorted ubiquitin-carrying enzymes (UCEs, which are a collection of E2 and ARIH-family E3s) specialized for either initial substrate ubiquitylation (priming) or forging poly-ubiquitin chains. We discovered specific human CRL-UCE pairings governing substrate priming. The results reveal pairing of CUL2-based CRLs and UBE2R-family UCEs in cells, essential for efficient PROTAC-induced neo-substrate degradation. Despite UBE2R2's intrinsic programming to catalyze poly-ubiquitylation, CUL2 employs this UCE for geometrically precise PROTAC-dependent ubiquitylation of a neo-substrate and for rapid priming of substrates recruited to diverse receptors. Cryo-EM structures illuminate how CUL2-based CRLs engage UBE2R2 to activate substrate ubiquitylation. Thus, pairing with a specific UCE overcomes E2 catalytic limitations to drive substrate ubiquitylation and targeted protein degradation.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Poliubiquitina/metabolismo , Proteínas Portadoras/metabolismo
2.
Urol Ann ; 15(3): 249-255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664103

RESUMEN

Accurate detection of metastatic prostate cancer in the setting of preoperative staging as well as posttreatment recurrence is crucial to provide patients with appropriate and timely treatment of their disease. This has traditionally been accomplished with a combination of computed tomography, magnetic resonance imaging, and bone scan. Recently, more novel imaging techniques have been developed to help improve the detection of advanced and metastatic prostate cancer. This review discusses the efficacy of the traditional imaging modalities as well as the novel imaging techniques in detecting metastatic prostate cancer. Articles discussed were gathered through a formal PubMed search.

3.
Br J Cancer ; 123(4): 624-632, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451467

RESUMEN

BACKGROUND: Women with colorectal cancer (CRC) have a significant survival advantage over men. Sex influences on the tumour microenvironment (TME) are not well characterised, despite the importance of immune response in CRC. We hypothesised that sex-divergent immune responses could contribute to survival. METHODS: Using a murine model of metastatic CRC, we examined T cells, macrophages, and cytokines locally and systemically. TME and serum cytokines were measured by multiplex bead-based arrays, while FCA was used to identify cells and phenotypes. IHC provided spatial confirmation of T cell infiltration. RESULTS: Females had increased survival and T cell infiltration. CD8, CD4 and Th2 populations correlated with longer survival. Males had increased serum levels of chemokines and inflammation-associated cytokines. Within the TME, males had lower cytokine levels than females, and a shallower cytokine gradient to the periphery. Female tumours had elevated IL-10+ macrophages, which correlated with survival. CONCLUSIONS: These data demonstrate survival-associated differences in the immune response of males and females to metastatic CRC. Females showed changes in cytokine production accompanied by increased immune cell populations, biased toward Th2-axis phenotypes. Key differences in the immune response to CRC correlated with survival in this model. These differences support a multi-faceted shift across the TME.


Asunto(s)
Neoplasias Colorrectales/inmunología , Citocinas/sangre , Macrófagos/metabolismo , Linfocitos T/metabolismo , Inmunidad Adaptativa , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunidad Innata , Masculino , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Fenotipo , Caracteres Sexuales , Análisis de Supervivencia , Microambiente Tumoral
4.
Nature ; 578(7795): 461-466, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051583

RESUMEN

Eukaryotic cell biology depends on cullin-RING E3 ligase (CRL)-catalysed protein ubiquitylation1, which is tightly controlled by the modification of cullin with the ubiquitin-like protein NEDD82-6. However, how CRLs catalyse ubiquitylation, and the basis of NEDD8 activation, remain unknown. Here we report the cryo-electron microscopy structure of a chemically trapped complex that represents the ubiquitylation intermediate, in which the neddylated CRL1ß-TRCP promotes the transfer of ubiquitin from the E2 ubiquitin-conjugating enzyme UBE2D to its recruited substrate, phosphorylated IκBα. NEDD8 acts as a nexus that binds disparate cullin elements and the RING-activated ubiquitin-linked UBE2D. Local structural remodelling of NEDD8 and large-scale movements of CRL domains converge to juxtapose the substrate and the ubiquitylation active site. These findings explain how a distinctive ubiquitin-like protein alters the functions of its targets, and show how numerous NEDD8-dependent interprotein interactions and conformational changes synergistically configure a catalytic CRL architecture that is both robust, to enable rapid ubiquitylation of the substrate, and fragile, to enable the subsequent functions of cullin-RING proteins.


Asunto(s)
Microscopía por Crioelectrón , Proteína NEDD8/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Biocatálisis , Humanos , Modelos Moleculares , Proteína NEDD8/química , Proteína NEDD8/ultraestructura , Inhibidor NF-kappaB alfa/química , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/ultraestructura , Fosforilación , Conformación Proteica , Especificidad por Sustrato , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/ultraestructura , Ubiquitinación
5.
Elife ; 82019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31868589

RESUMEN

The cullin-RING ligases (CRLs) form the major family of E3 ubiquitin ligases. The prototypic CRLs in yeast, called SCF enzymes, employ a single E2 enzyme, Cdc34, to build poly-ubiquitin chains required for degradation. In contrast, six different human E2 and E3 enzyme activities, including Cdc34 orthologs UBE2R1 and UBE2R2, appear to mediate SCF-catalyzed substrate polyubiquitylation in vitro. The combinatorial interplay of these enzymes raises questions about genetic buffering of SCFs in human cells and challenges the dogma that E3s alone determine substrate specificity. To enable the quantitative comparisons of SCF-dependent ubiquitylation reactions with physiological enzyme concentrations, mass spectrometry was employed to estimate E2 and E3 levels in cells. In combination with UBE2R1/2, the E2 UBE2D3 and the E3 ARIH1 both promoted SCF-mediated polyubiquitylation in a substrate-specific fashion. Unexpectedly, UBE2R2 alone had negligible ubiquitylation activity at physiological concentrations and the ablation of UBE2R1/2 had no effect on the stability of SCF substrates in cells. A genome-wide CRISPR screen revealed that an additional E2 enzyme, UBE2G1, buffers against the loss of UBE2R1/2. UBE2G1 had robust in vitro chain extension activity with SCF, and UBE2G1 knockdown in cells lacking UBE2R1/2 resulted in stabilization of the SCF substrates p27 and CYCLIN E as well as the CUL2-RING ligase substrate HIF1α. The results demonstrate the human SCF enzyme system is diversified by association with multiple catalytic enzyme partners.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/genética , Genoma Humano/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Espectrometría de Masas , Poliubiquitina/genética , Transducción de Señal/genética , Ubiquitinación/genética
6.
Methods Mol Biol ; 1844: 39-58, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242702

RESUMEN

Ubiquitin ligases (E3s) function by binding to both a protein substrate and to ubiquitin-conjugating enzymes (E2s) bound to ubiquitin. E3s facilitate the transfer of ubiquitin from the E2 active site to an E3-bound substrate. Thus, the affinity of the interaction of an E2 with its E3 partner is of considerable interest. The purpose of this work is to (1) provide protocols for the purification of the human E2 Cdc34, as well as for some additional protein components needed for the assays described here whose purification protocols haven't been described elsewhere in detail; (2) provide the researcher with critical information regarding the proper long-term storage of these enzymes to retain maximal activity; (3) provide a protocol to benchmark Cdc34 activity with previously described activity levels in the literature; and (4) provide a simple and rapid means of measuring E2 affinity for an E3.


Asunto(s)
Bioensayo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ácido Aspártico , Bioensayo/métodos , Humanos , Cinética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
7.
8.
Nat Clim Chang ; 7: 743-748, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29391875

RESUMEN

Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

9.
Mol Cell Biol ; 36(11): 1720-32, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27044868

RESUMEN

Lysine selectivity is of critical importance during polyubiquitin chain formation because the identity of the lysine controls the biological outcome. Ubiquitins are covalently linked in polyubiquitin chains through one of seven lysine residues on its surface and the C terminus of adjacent protomers. Lys 48-linked polyubiquitin chains signal for protein degradation; however, the structural basis for Lys 48 selectivity remains largely unknown. The ubiquitin-conjugating enzyme Ube2R1/2 has exquisite specificity for Lys 48, and computational docking of Ube2R1/2 and ubiquitin predicts that Lys 48 is guided to the active site through a key electrostatic interaction between Arg 54 on ubiquitin and Asp 143 on Ube2R1/2. The validity of this interaction was confirmed through biochemical experiments. Since structural examples involving Arg 54 in protein-ubiquitin complexes are exceedingly rare, these results provide additional insight into how ubiquitin-protein complexes can be stabilized. We discuss how these findings relate to how other ubiquitin-conjugating enzymes direct the lysine specificity of polyubiquitin chains.


Asunto(s)
Lisina/metabolismo , Poliubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Arginina/metabolismo , Ácido Aspártico/metabolismo , Dominio Catalítico , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Poliubiquitina/química , Unión Proteica , Conformación Proteica , Enzimas Ubiquitina-Conjugadoras/metabolismo
10.
J Biol Chem ; 290(2): 1106-18, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25425648

RESUMEN

In the ubiquitin-proteasome system, protein substrates are degraded via covalent modification by a polyubiquitin chain. The polyubiquitin chain must be assembled rapidly in cells, because a chain of at least four ubiquitins is required to signal for degradation, and chain-editing enzymes in the cell may cleave premature polyubiquitin chains before achieving this critical length. The ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase SCF are capable of building polyubiquitin chains onto protein substrates both rapidly and processively; this may be explained at least in part by the atypically fast rate of Cdc34 and SCF association. This rapid association has been attributed to electrostatic interactions between the acidic C-terminal tail of Cdc34 and a feature on SCF called the basic canyon. However, the structural aspects of the Cdc34-SCF interaction and how they permit rapid complex formation remain elusive. Here, we use protein cross-linking to demonstrate that the Cdc34-SCF interaction occurs in multiple conformations, where several residues from the Cdc34 acidic tail are capable of contacting a broad region of the SCF basic canyon. Similar patterns of cross-linking are also observed between Cdc34 and the Cul1 paralog Cul2, implicating the same mechanism for the Cdc34-SCF interaction in other members of the cullin-RING ubiquitin ligases. We discuss how these results can explain the rapid association of Cdc34 and SCF.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cullin/química , Humanos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química
11.
Pharmacol Res Perspect ; 3(6): e00180, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27022462

RESUMEN

Caffeine is the most widely used neurostimulant in the world. There is considerable debate on its effect on immune cells as it has been shown to antagonize adenosine receptors (ARs), which mediate an anti-inflammatory switch in activated immune cells. A second target is phosphodiesterase, where it acts as an inhibitor. If the primary effect of caffeine on mononuclear phagocytes were to antagonize ARs we would expect cells exposed to caffeine to have a prolonged proinflammatory response. The aim of this study was to investigate the effects and mechanism of action of caffeine in mononuclear phagocytes. Human mononuclear phagocytes were separated from whole blood and pretreated with protein kinase A inhibitor (PKA) and then exposed to micromolar physiological concentrations of caffeine. Phagocytosis and phagocytosis exhaustion were quantified using flow cytometry. Treatments were analyzed and compared to controls, using a beta regression controlling for factors of age, gender, caffeine intake, and exercise. We found that caffeine suppresses phagocytosis at micromolar physiological concentrations. This suppression was prevented when mononuclear phagocytes were pretreated with PKA inhibitor, suggesting that caffeine's phagocytic suppression may be due to its function as a phosphodiesterase inhibitor, pushing cells towards an anti-inflammatory response. Additionally, these effects are altered by regular caffeine intake and fitness level, emphasizing that tolerance and immune robustness are important factors in mononuclear phagocyte activation. These results demonstrate that caffeine may be acting as a phosphodiesterase inhibitor and suppressing phagocytosis in mononuclear phagocytes by promoting an anti-inflammatory response.

12.
J Biol Chem ; 288(48): 34882-96, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24129577

RESUMEN

Together with ubiquitin ligases (E3), ubiquitin-conjugating enzymes (E2) are charged with the essential task of synthesizing ubiquitin chains onto protein substrates. Some 75% of the known E2s in the human proteome contain unique insertions in their primary sequences, yet it is largely unclear what effect these insertions impart on the ubiquitination reaction. Cdc34 is an important E2 with prominent roles in cell cycle regulation and signal transduction. The amino acid sequence of Cdc34 contains an insertion distal to the active site that is absent in most other E2s, yet this acidic loop (named for its four invariably conserved acidic residues) is critical for Cdc34 function both in vitro and in vivo. Here we have investigated how the acidic loop in human Cdc34 promotes ubiquitination, identifying two key molecular events during which the acidic loop exerts its influence. First, the acidic loop promotes the interaction between Cdc34 and its ubiquitin ligase partner, SCF. Second, two glutamic acid residues located on the distal side of the loop collaborate with an invariably conserved histidine on the proximal side of the loop to suppress the pKa of an ionizing species on ubiquitin or Cdc34 which greatly contributes to Cdc34 catalysis. These results demonstrate that insertions can guide E2s to their physiologically relevant ubiquitin ligases as well as provide essential modalities that promote catalysis.


Asunto(s)
Proteínas Ligasas SKP Cullina F-box/química , Saccharomyces cerevisiae/genética , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitinación/genética , Secuencia de Aminoácidos , Secuencia de Bases , Catálisis , Dominio Catalítico , Ciclo Celular/genética , Humanos , Proteolisis , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saccharomyces cerevisiae/enzimología , Transducción de Señal , Ubiquitina/biosíntesis , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...