Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 91(2): 518-27, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20392016

RESUMEN

The light : nutrient hypothesis posits that herbivore growth is increasingly constrained by low food quality as the ratio of light to nutrients increases in aquatic ecosystems. We tested predictions of this hypothesis by examining the effects of large seasonal cycles in light and nutrients on the mineral content of periphyton and the growth rate of a dominant herbivore (the snail Elimia clavaeformis) in two oligotrophic streams. Streambed irradiances in White Oak Creek and Walker Branch (eastern Tennessee, USA) varied dramatically on a seasonal basis due to leaf phenology in the surrounding deciduous forests and seasonal changes in sun angle. Concentrations of dissolved nutrients varied inversely with light, causing light : nitrate and light : phosphate to range almost 100-fold over the course of any individual year. Periphyton nitrogen and phosphorus concentrations were much lower than the concentrations of these elements in snails, and they bottomed out in early spring when streambed irradiances were highest. Snail growth, however, peaked in early spring when light:nutrient ratios were highest and periphyton nutrient concentrations were lowest, Growth was linearly related to primary production (accounting for up to 85% of growth variance in individual years), which in turn was driven by seasonal variation in light. Conceptual models of herbivore growth indicate that growth should initially increase as increasing light levels stimulate primary production, but then level off, and then decrease as the negative effects of decreasing algal nutrient content override the positive effects of increased food production. Our results showed no evidence of an inflection point where increasing ratios of light to nutrients negatively affected growth. Snail growth in these intensively grazed streams is probably unaffected by periphyton nutrient content because exploitative competition for food reduces growth rates to levels where the demand for nitrogen and phosphorus is small enough to be satisfied by even low levels of these nutrients in periphyton. Competition for limited food resources in habitats where herbivore densities are uncontrolled by predation or other mortality factors should strongly influence the potential for herbivores to be limited by mineral deficits in their food.


Asunto(s)
Conducta Alimentaria/fisiología , Luz , Ríos , Caracoles/crecimiento & desarrollo , Caracoles/fisiología , Animales , Ecosistema , Factores de Tiempo
2.
Environ Manage ; 45(3): 563-76, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20108138

RESUMEN

The effects of pollutants on primary producers ramify through ecosystems because primary producers provide food and structure for higher trophic levels and they mediate the biogeochemical cycling of nutrients and contaminants. Periphyton (attached algae) were studied as part of a long-term biological monitoring program designed to guide remediation efforts by the Department of Energy's Y-12 National Security Complex on East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee. High concentrations of nutrients entering EFPC were responsible for elevated periphyton production and placed the stream in a state of eutrophy. High rates of primary production at upstream locations in EFPC were associated with alterations in both invertebrate and fish communities. Grazers represented >50% of the biomass of invertebrates and fish near the Y-12 Complex but <10% at downstream and reference sites. An index of epilithic periphyton production accounted for 95% of the site-to-site variation in biomass of grazing fish. Analyses of heavy metals in EFPC periphyton showed that concentrations of zinc, cadmium, copper and nickel in periphyton decreased exponentially with distance downstream from Y-12. Zinc uptake by periphyton was estimated to reduce the concentration of this metal in stream water approximately 60% over a 5-km reach of EFPC. Management options for mitigating eutrophy in EFPC include additional reductions in nutrient inputs and/or allowing streamside trees to grow and shade the stream. However, reducing periphyton growth may lead to greater downstream transport of contaminants while simultaneously causing higher concentrations of mercury and PCBs in fish at upstream sites.


Asunto(s)
Conservación de los Recursos Naturales/economía , Ecosistema , Eucariontes/metabolismo , Ríos , Contaminación Química del Agua/prevención & control , Animales , Biomasa , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente , Eutrofización , Peces , Invertebrados , Metales/metabolismo , Metales/toxicidad , Nitrógeno/metabolismo , Nitrógeno/toxicidad , Fotosíntesis , Tennessee , Factores de Tiempo , Contaminantes Químicos del Agua/metabolismo
3.
Environ Sci Technol ; 39(6): 1513-8, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15819203

RESUMEN

Despite the key role microalgae play in introducing toxicants into aquatic food webs, little is known about the effects of environmental factors on metal accumulation by these primary producers. Environmental factors such as light and nutrients alter growth rates and may consequently influence metal concentrations in microalgae through growth dilution. Laboratory experiments suggested that metal uptake and elimination by microalgal biofilms were gradual enough to enable dilution of metals within the biofilms by photosynthetically accrued carbon, and a simple kinetic model of metal accumulation predicted significant variation in metal content due to growth dilution over the natural range of microalgal growth rates. The ratio of metal uptake to carbon uptake by microalgal biofilms decreased exponentially with increasing light in short-term laboratory experiments because photosynthesis was much more sensitive to a light gradient than was metal uptake. The effect of light on biofilm metal concentrations was confirmed in situ with a long-term experiment in which experimental shading of biofilms in a metal-contaminated stream decreased biofilm growth rates and caused a 3x increase in biofilm concentrations of twelve metals, including methylmercury. Slow growth at the primary producer level is a likely contributor to higher biotic metal concentrations in shaded, oligotrophic, or cold ecosystems.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Eucariontes/química , Eucariontes/crecimiento & desarrollo , Metales/farmacocinética , Compuestos de Metilmercurio/farmacocinética , Contaminantes del Agua/farmacocinética , Ecosistema , Luz , Ríos
4.
Ecology ; 68(6): 1955-1965, 1987 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29357163

RESUMEN

The interaction between the grazing mayfly Ameletus validus and periphyton in a small, northern California stream was examined by manipulating the density of the mayfly in flow-through plexiglass channels. Containing natural cobble substrate and located in situ, the channels established an initial gradient of A. validus at 0, 0.5, 1, and 4 times the average density of the mayfly in Barnwell Creek. After 23 d, A. validus significantly depressed periphyton standing crop: ash-free dry mass (AFDM) at the 0, 0.5, 1, and 4 N grazer densities was 5.067 ± 1.389 (se), 1.829 ± 0.173, 1.741 ± 0.325, and 1.009 ± 0.199 g/m2 (ANOVA: P < .01). The mayfly also influenced two structural attributes of the periphyton, increasing the amount of chlorophyll a per unit biomass and decreasing the relative contribution of the loose, upper layer to total periphyton biomass. Principal component analysis of algal relative abundances contrasted the effect of grazing on two groups of diatoms. A group of species found primarily in the loose layer of periphyton (Nitzschia spp., Surirella spiralis, Cymatopleura elliptica, and Navicula cryptocephala) was disproportionately reduced in abundance, while an adnate group (Gomphonema clevei, Achnanthes minutissima, Synedra ulna, Rhoicosphenia curvata, and an undescribed species of Epithemia) increased its relative abundance with increasing grazing pressure. The decline in relative abundance of the loose layer diatoms did not appear to result from selective consumption by A. validus, but may have been mediated by a reduction of inorganic sediment in the periphyton by A. validus. Inorganic sediment was highly correlated with the relative abundances of the loose layer group of diatoms, a group of species that are adapted for locomotion on sediment substrates. A. validus growth in the experimental channels was strongly density dependent. Growth in length over 23 d for the 0.5, 1, and 4 N treatments was 2.24 ± 0.17, 1.80 ± 0.23, and 1.15 ± 0.25 mm (ANOVA: P < .01). The significantly greater growth of A. validus at subnormal densities in the experimental channels suggested that the A. validus population in Barnwell Creek was food-limited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...