Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cheminform ; 16(1): 51, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730469

RESUMEN

Chemical reaction optimization (RO) is an iterative process that results in large, high-dimensional datasets. Current tools allow for only limited analysis and understanding of parameter spaces, making it hard for scientists to review or follow changes throughout the process. With the recent emergence of using artificial intelligence (AI) models to aid RO, another level of complexity has been added. Helping to assess the quality of a model's prediction and understand its decision is critical to supporting human-AI collaboration and trust calibration. To address this, we propose CIME4R-an open-source interactive web application for analyzing RO data and AI predictions. CIME4R supports users in (i) comprehending a reaction parameter space, (ii) investigating how an RO process developed over iterations, (iii) identifying critical factors of a reaction, and (iv) understanding model predictions. This facilitates making informed decisions during the RO process and helps users to review a completed RO process, especially in AI-guided RO. CIME4R aids decision-making through the interaction between humans and AI by combining the strengths of expert experience and high computational precision. We developed and tested CIME4R with domain experts and verified its usefulness in three case studies. Using CIME4R the experts were able to produce valuable insights from past RO campaigns and to make informed decisions on which experiments to perform next. We believe that CIME4R is the beginning of an open-source community project with the potential to improve the workflow of scientists working in the reaction optimization domain. SCIENTIFIC CONTRIBUTION: To the best of our knowledge, CIME4R is the first open-source interactive web application tailored to the peculiar analysis requirements of reaction optimization (RO) campaigns. Due to the growing use of AI in RO, we developed CIME4R with a special focus on facilitating human-AI collaboration and understanding of AI models. We developed and evaluated CIME4R in collaboration with domain experts to verify its practical usefulness.

2.
ACS Cent Sci ; 9(2): 307-317, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36844498

RESUMEN

Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors' hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC-DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA's data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA's peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities.

3.
J Am Chem Soc ; 144(33): 15020-15025, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969854

RESUMEN

The most active alkyne metathesis catalysts rely on well-defined Mo alkylidynes, X3Mo≡CR (X = OR), in particular the recently developed canopy catalyst family bearing silanolate ligand sets. Recent efforts to understand catalyst reactivity patterns have shown that NMR chemical shifts are powerful descriptors, though previous studies have mostly focused on ligand-based NMR descriptors. Here, we show in the context of alkyne metathesis that 95Mo chemical shift tensors encode detailed information on the electronic structure of these catalysts. Analysis by first-principles calculations of 95Mo chemical shift tensors extracted from solid-state 95Mo NMR spectra shows a direct link of chemical shift values with the energies of the HOMO and LUMO, two molecular orbitals involved in the key [2 + 2]-cycloaddition step, thus linking 95Mo chemical shifts to reactivity. In particular, the 95Mo chemical shifts are driven by ligand electronegativity (σ-donation) and electron delocalization through Mo-O π interactions, thus explaining the reactivity patterns of the silanolate canopy catalysts. These results further motivate exploration of transition metal NMR signatures and their relationships to electronic structure and reactivity.


Asunto(s)
Alquinos , Elementos de Transición , Alquinos/química , Catálisis , Ligandos , Espectroscopía de Resonancia Magnética
4.
Chemistry ; 27(56): 14025-14033, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34293239

RESUMEN

Molybdenum alkylidyne complexes with a trisilanolate podand ligand framework ("canopy catalysts") are the arguably most selective catalysts for alkyne metathesis known to date. Among them, complex 1 a endowed with a fence of lateral methyl substituents on the silicon linkers is the most reactive, although fairly high loadings are required in certain applications. It is now shown that this catalyst decomposes readily via a bimolecular pathway that engages the Mo≡CR entities in a stoichiometric triple-bond metathesis event to furnish RC≡CR and the corresponding dinuclear complex, 8, with a Mo≡Mo core. In addition to the regular analytical techniques, 95 Mo NMR was used to confirm this unusual outcome. This rapid degradation mechanism is largely avoided by increasing the size of the peripheral substituents on silicon, without unduly compromising the activity of the resulting complexes. When chemically challenged, however, canopy catalysts can open the apparently somewhat strained tripodal ligand cages; this reorganization leads to the formation of cyclo-tetrameric arrays composed of four metal alkylidyne units linked together via one silanol arm of the ligand backbone. The analogous tungsten alkylidyne complex 6, endowed with a tripodal tris-alkoxide (rather than siloxide) ligand framework, is even more susceptible to such a controlled and reversible cyclo-oligomerization. The structures of the resulting giant macrocyclic ensembles were established by single-crystal X-ray diffraction.


Asunto(s)
Alquinos , Alquinos/química , Catálisis , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química
5.
J Am Chem Soc ; 143(15): 5643-5648, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33826335

RESUMEN

Molybdenum alkylidyne complexes of the "canopy catalyst" series define new standards in the field of alkyne metathesis. The tripodal ligand framework lowers the symmetry of the metallacyclobutadiene complex formed by [2 + 2] cycloaddition with the substrate and imposes constraints onto the productive [2 + 2] cycloreversion; pseudorotation corrects this handicap and makes catalytic turnover possible. A combined spectroscopic, crystallographic, and computational study provides insights into this unorthodox mechanism and uncovers the role that metallatetrahedrane complexes play in certain cases.


Asunto(s)
Alquinos/química , Molibdeno/química , Catálisis , Complejos de Coordinación/química , Reacción de Cicloadición , Teoría Funcional de la Densidad , Espectroscopía de Resonancia Magnética , Conformación Molecular , Termodinámica
6.
Angew Chem Int Ed Engl ; 59(48): 21758-21768, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-32820864

RESUMEN

Triarylsilanolates are privileged ancillary ligands for molybdenum alkylidyne catalysts for alkyne metathesis but lead to disappointing results and poor stability in the tungsten series. 1 H,183 W heteronuclear multiple bond correlation spectroscopy, exploiting a favorable 5 J-coupling between the 183 W center and the peripheral protons on the alkylidyne cap, revealed that these ligands upregulate the Lewis acidity to an extent that the tungstenacyclobutadiene formed in the initial [2+2] cycloaddition step is over-stabilized and the catalytic turnover brought to a halt. Guided by the 183 W NMR shifts as a proxy for the Lewis acidity of the central atom and by an accompanying chemical shift tensor analysis of the alkylidyne unit, the ligand design was revisited and a more strongly π-donating all-alkoxide ligand prepared. The new expanded chelate complex has a tempered Lewis acidity and outperforms the classical Schrock catalyst, carrying monodentate tert-butoxy ligands, in terms of rate and functional-group compatibility.

7.
J Am Chem Soc ; 142(38): 16392-16402, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32847348

RESUMEN

Treatment of [MoCl4(THF)2] with MOtBu (M = Na, Li) does not result in simple metathetic ligand exchange but entails disproportionation with formation of the well-known dinuclear complex [(tBuO)3Mo≡Mo(OtBu)3] and a new paramagnetic compound, [Mo(OtBu)5]. This particular five-coordinate species is the first monomeric, homoleptic, all-oxygen-ligated but non-oxo 4d1 Mo(V) complex known to date; as such, it proves that the dominance of the Mo═O group over (high-valent) molybdenum chemistry can be challenged. [Mo(OtBu)5] was characterized in detail by a combined experimental/computational approach using X-ray diffraction; UV/vis, MCD, IR, EPR, and NMR spectroscopy; and quantum chemistry. The recorded data confirm a Jahn-Teller distortion of the structure, as befitting a d1 species, and show that the complex undergoes Berry pseudorotation. The alkoxide ligands render the disproportionation reaction, leading the formation of [Mo(OtBu)5] to be particularly facile, even though the parent complex [MoCl4(THF)2] itself was also found to be intrinsically unstable; remarkably, this substrate converts into a crystalline material, in which the newly formed Mo(III) and Mo(V) products cohabitate the same unit cell.

8.
J Am Chem Soc ; 142(25): 11279-11294, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32463684

RESUMEN

A new family of structurally well-defined molybdenum alkylidyne catalysts for alkyne metathesis, which is distinguished by a tripodal trisilanolate ligand architecture, is presented. Complexes of type 1 combine the virtues of previous generations of silanolate-based catalysts with a significantly improved functional group tolerance. They are easy to prepare on scale; the modularity of the ligand synthesis allows the steric and electronic properties to be fine-tuned and hence the application profile of the catalysts to be optimized. This opportunity is manifested in the development of catalyst 1f, which is as reactive as the best ancestors but exhibits an unrivaled scope. The new catalysts work well in the presence of unprotected alcohols and various other protic groups. The chelate effect entails even a certain stability toward water, which marks a big leap forward in metal alkylidyne chemistry in general. At the same time, they tolerate many donor sites, including basic nitrogen and numerous heterocycles. This aspect is substantiated by applications to polyfunctional (natural) products. A combined spectroscopic, crystallographic, and computational study provides insights into structure and electronic character of complexes of type 1. Particularly informative are a density functional theory (DFT)-based chemical shift tensor analysis of the alkylidyne carbon atom and 95Mo NMR spectroscopy; this analytical tool had been rarely used in organometallic chemistry before but turns out to be a sensitive probe that deserves more attention. The data show that the podand ligands render a Mo-alkylidyne a priori more electrophilic than analogous monodentate triarylsilanols; proper ligand tuning, however, allows the Lewis acidity as well as the steric demand about the central atom to be adjusted to the point that excellent performance of the catalyst is ensured.

9.
Angew Chem Int Ed Engl ; 58(44): 15690-15696, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31449713

RESUMEN

A new type of molybdenum alkylidyne catalysts for alkyne metathesis is described, which is distinguished by an unconventional podand topology. These structurally well-defined complexes are easy to make on scale and proved to be tolerant toward numerous functional groups; even certain protic substituents were found to be compatible. The new catalysts were characterized by X-ray crystallography and by spectroscopic means, including 95 Mo NMR.

10.
Org Lett ; 21(13): 5363-5367, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31240940

RESUMEN

Pyridones are important heteroaromatic scaffolds found in natural products and pharmaceuticals and are, therefore, of major interest in organic synthetic chemistry. Here we report the first C-H pyridonation of unactivated (hetero-)arenes, providing a methodology to directly access N-aryl-2- and 4-pyridones. Generation of pyridinium radical cations through single-electron reduction allows for the synthesis of pyridones on structurally complex molecules.

11.
Angew Chem Int Ed Engl ; 58(2): 532-536, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30395385

RESUMEN

(Hetero)arylamines constitute some of the most prevalent functional molecules, especially as pharmaceuticals. However, structurally complex aromatics currently cannot be converted into arylamines, so instead, each product isomer must be assembled through a multistep synthesis from simpler building blocks. Herein, we describe a late-stage aryl C-H amination reaction for the synthesis of complex primary arylamines that other reactions cannot access directly. We show and rationalize through a mechanistic analysis the reasons for the wide substrate scope and the constitutional diversity of the reaction, which gives access to molecules that would not have been readily available otherwise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...