Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 625(7996): 673-678, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38267680

RESUMEN

Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions1-6. In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z ≫ 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron-electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s1/22p3/2 J = 2 → 1s1/22s1/2 J = 1 intrashell transition in the heaviest two-electron ion (U90+) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron-electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain.

2.
Chemphyschem ; 24(11): e202300061, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36815408

RESUMEN

Carbon 1s core-hole excitation of the molecular anion C2 - has been experimentally studied at high resolution by employing the photon-ion merged-beams technique at a synchrotron light source. The experimental cross section for photo-double-detachment shows a pronounced vibrational structure associated with 1 σ u → 3 σ g ${1\sigma _u \to 3\sigma _g }$ and 1 σ g → 1 π u ${1\sigma _g \to 1\pi _u }$ core excitations of the C2 - ground level and first excited level, respectively. A detailed Franck-Condon analysis reveals a strong contraction of the C2 - molecular anion by 0.2 Šupon this core photoexcitation. The associated change of the molecule's moment of inertia leads to a noticeable rotational broadening of the observed vibrational spectral features. This broadening is accounted for in the present analysis which provides the spectroscopic parameters of the C2 - 1 σ u - 1 3 σ g 2 2 Σ u + ${1\sigma _u^{ - 1} \,3\sigma _g^2 \;^2 \Sigma _u^ + }$ and 1 σ g - 1 3 σ g 2 2 Σ g + ${1\sigma _g^{ - 1} \,3\sigma _g^2 \;^2 \Sigma _g^ + }$ core-excited levels.

3.
J Chem Phys ; 154(8): 084307, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639774

RESUMEN

We have measured the merged-beams rate coefficient for the titular isotope exchange reactions as a function of the relative collision energy in the range of ∼3 meV-10 eV. The results appear to scale with the number of available sites for deuteration. We have performed extensive theoretical calculations to characterize the zero-point energy corrected reaction path. Vibrationally adiabatic minimum energy paths were obtained using a combination of unrestricted quadratic configuration interaction of single and double excitations and internally contracted multireference configuration interaction calculations. The resulting barrier height, ranging from 68 meV to 89 meV, together with the various asymptotes that may be reached in the collision, was used in a classical over-the-barrier model. All competing endoergic reaction channels were taken into account using a flux reduction factor. This model reproduces all three experimental sets quite satisfactorily. In order to generate thermal rate coefficients down to 10 K, the internal excitation energy distribution of each H3 + isotopologue is evaluated level by level using available line lists and accurate spectroscopic parameters. Tunneling is accounted for by a direct inclusion of the exact quantum tunneling probability in the evaluation of the cross section. We derive a thermal rate coefficient of <1×10-12 cm3 s-1 for temperatures below 44 K, 86 K, and 139 K for the reaction of D with H3 +, H2D+, and D2H+, respectively, with tunneling effects included. The derived thermal rate coefficients exceed the ring polymer molecular dynamics prediction of Bulut et al. [J. Phys. Chem. A 123, 8766 (2019)] at all temperatures.

4.
Phys Rev Lett ; 122(9): 092701, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30932526

RESUMEN

We report the first measurement of low-energy proton-capture cross sections of ^{124}Xe in a heavy-ion storage ring. ^{124}Xe^{54+} ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The ^{125}Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.

5.
Phys Rev Lett ; 113(11): 113001, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25259973

RESUMEN

The photoelectric effect has been studied in the regime of hard x rays and strong Coulomb fields via its time-reversed process of radiative recombination (RR). In the experiment, the relativistic electrons recombined into the 2p_{3/2} excited state of hydrogenlike uranium ions, and both the RR x rays and the subsequently emitted characteristic x rays were detected in coincidence. This allowed us to observe the coherence between the magnetic substates in a highly charged ion and to identify the contribution of the spin-orbit interaction to the RR process.

6.
Rev Sci Instrum ; 85(5): 053513, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24880375

RESUMEN

Although different ion-atom collisions have been studied in various contexts, precise values of cross-sections for many atomic processes were seldom obtained. One of the main uncertainties originates from the value of target densities. In this paper, we describe a unique method to measure a target density precisely with a combination of physical vapor deposition and inductively coupled plasma optical emission spectrometry. This method is preliminarily applied to a charge transfer cross-section measurement in collisions between highly charged ions and magnesium vapor. The final relative uncertainty of the target density is less than 2.5%. This enables the precise studies of atomic processes in ion-atom collisions, even though in the trial test the deduction of precise capture cross-sections was limited by other systematic errors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...