Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Deliv ; 31(1): 2296350, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38147499

RESUMEN

Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.


Asunto(s)
Sistemas de Liberación de Medicamentos , Insulina , Humanos , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Polímeros , Inyecciones Subcutáneas , Agujas , Piel
2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38004496

RESUMEN

Quercetin is the major polyphenolic flavonoid that belongs to the class called flavanols. It is found in many foods, such as green tea, cranberry, apple, onions, asparagus, radish leaves, buckwheat, blueberry, broccoli, and coriander. It occurs in many different forms, but the most abundant quercetin derivatives are glycosides and ethers, namely, Quercetin 3-O-glycoside, Quercetin 3-sulfate, Quercetin 3-glucuronide, and Quercetin 3'-metylether. Quercetin has antioxidant, anti-inflammatory, cardioprotective, antiviral, and antibacterial effects. It is found to be beneficial against cardiovascular diseases, cancer, diabetes, neuro-degenerative diseases, allergy asthma, peptic ulcers, osteoporosis, arthritis, and eye disorders. In pre-clinical and clinical investigations, its impacts on various signaling pathways and molecular targets have demonstrated favorable benefits for the activities mentioned above, and some global clinical trials have been conducted to validate its therapeutic profile. It is also utilized as a nutraceutical due to its pharmacological properties. Although quercetin has several pharmacological benefits, its clinical use is restricted due to its poor water solubility, substantial first-pass metabolism, and consequent low bioavailability. To circumvent this limited bioavailability, a quercetin-based nanoformulation has been considered in recent times as it manifests increased quercetin uptake by the epithelial system and enhances the delivery of quercetin to the target site. This review mainly focuses on pharmacological action, clinical trials, patents, marketed products, and approaches to improving the bioavailability of quercetin with the use of a nanoformulation.

3.
Pharmaceutics ; 15(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37631243

RESUMEN

One of the most cutting-edge, effective, and least invasive pharmaceutical innovations is the utilization of microneedles (MNs) for drug delivery, patient monitoring, diagnostics, medicine or vaccine delivery, and other medical procedures (e.g., intradermal vaccination, allergy testing, dermatology, and blood sampling). The MN-based system offers many advantages, such as minimal cost, high medical effectiveness, comparatively good safety, and painless drug application. Drug delivery through MNs can possibly be viewed as a viable instrument for various macromolecules (e.g., proteins, peptides, and nucleic acids) that are not efficiently administered through traditional approaches. This review article provides an overview of MN-based research in the transdermal delivery of hypertensive drugs. The critical attributes of microneedles are discussed, including the mechanism of drug release, pharmacokinetics, fabrication techniques, therapeutic applications, and upcoming challenges. Furthermore, the therapeutic perspective and improved bioavailability of hypertensive drugs that are poorly aqueous-soluble are also discussed. This focused review provides an overview of reported studies and the recent progress of MN-based delivery of hypertensive drugs, paving the way for future pharmaceutical uses. As MN-based drug administration bypasses first-pass metabolism and the high variability in drug plasma levels, it has grown significantly more important for systemic therapy. In conclusion, MN-based drug delivery of hypertensive drugs for increasing bioavailability and patient compliance could support a new trend of hypertensive drug delivery and provide an alternative option, overcoming the restrictions of the current dosage forms.

4.
Int J Biol Macromol ; 248: 125757, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429342

RESUMEN

Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.


Asunto(s)
Polímeros , Almidón , Humanos , Almidón/química , Polímeros/química , Sistemas de Liberación de Medicamentos , Polisacáridos/química , Cationes/química , Atención a la Salud
5.
Int J Biol Macromol ; 234: 123696, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801273

RESUMEN

The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.


Asunto(s)
Diabetes Mellitus , Nanofibras , Humanos , Nanofibras/uso terapéutico , Nanofibras/química , Cicatrización de Heridas , Diabetes Mellitus/tratamiento farmacológico , Polímeros , Polisacáridos
6.
Molecules ; 27(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35335158

RESUMEN

Cancer is a major disease with a high mortality rate worldwide. In many countries, cancer is considered to be the second most common cause of death after cardiovascular disease. The clinical management of cancer continues to be a challenge as conventional treatments, such as chemotherapy and radiation therapy, have limitations due to their toxicity profiles. Unhealthy lifestyle and poor dietary habits are the key risk factors for cancer; having a healthy diet and lifestyle may minimize the risk. Epidemiological studies have shown that a high fruit and vegetable intake in our regular diet can effectively reduce the risk of developing certain types of cancers due to the high contents of antioxidants and phytochemicals. In vitro and in vivo studies have shown that phytochemicals exert significant anticancer effects due to their free radical scavenging capacity potential. There has been extensive research on the protective effects of phytochemicals in different types of cancers. This review attempts to give an overview of the etiology of different types of cancers and assesses the role of phytonutrients in the prevention of cancers, which makes the present review distinct from the others available.


Asunto(s)
Dieta , Neoplasias , Conducta Alimentaria , Frutas , Neoplasias/etiología , Neoplasias/prevención & control , Estado Nutricional
7.
Gels ; 7(4)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34940313

RESUMEN

Ibuprofen is a well-known non-steroidal anti-inflammatory (NSAID) medicine that is often used to treat inflammation in general. When given orally, it produces gastrointestinal issues which lead to lower patient compliance. Ibuprofen transdermal administration improves both patient compliance and the efficacy of the drug. Nanoconjugation hydrogels were proposed as a controlled transdermal delivery tool for ibuprofen. Six formulations were prepared using different compositions including chitosan, lipids, gum arabic, and polyvinyl alcohol, through ionic interaction, maturation, and freeze-thaw methods. The formulations were characterised by size, drug conjugation efficiency, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Further analysis of optimised hydrogels was performed, including X-ray diffraction (XRD), rheology, gel fraction and swelling ability, in vitro drug release, and in vitro macrophage prostaglandin E2 (PGE2) production testing. The effects of ibuprofen's electrostatic interaction with a lipid or polymer on the physicochemical and dissolution characterisation of ibuprofen hydrogels were evaluated. The results showed that the S3 (with lipid conjugation) hydrogel provided higher conjugation efficiency and prolonged drug release compared with the S6 hydrogel.

8.
Gels ; 7(4)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34842705

RESUMEN

Hydrogels are known for their leading role in biomaterial systems involving pharmaceuticals that fascinate material scientists to work on the wide variety of biomedical applications. The physical and mechanical properties of hydrogels, along with their biodegradability and biocompatibility characteristics, have made them an attractive and flexible tool with various applications such as imaging, diagnosis and treatment. The water-cherishing nature of hydrogels and their capacity to swell-contingent upon a few ecological signals or the simple presence of water-is alluring for drug conveyance applications. Currently, there are several problems relating to drug delivery, to which hydrogel may provide a possible solution. Hence, it is pertinent to collate updates on hydrogels pertaining to biomedical applications. The primary objective of this review article is to garner information regarding classification, properties, methods of preparations, and of the polymers used with particular emphasis on injectable hydrogels. This review also covers the regulatory and other commerce specific information. Further, it enlists several patents and clinical trials of hydrogels with related indications and offers a consolidated resource for all facets associated with the biomedical hydrogels.

9.
J Biomed Nanotechnol ; 17(8): 1612-1626, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34544538

RESUMEN

Nanotechnology is drawing attention nowadays due to its ability to regulate metals into nanosize, ultimately changing metal's physical, chemical, and optical properties. Silver nanoparticles are known for their potential impact as antimicrobial agents due to their inherent property penetrating the cell wall. The present study aimed to develop and statistically optimise using a novel combination of capsaicin loaded silver nanoparticles (AgCNPs) as an effective anti-bacterial agent to treat psoriasis using a green approach. Ascorbic acid was used as a reducing agent to fabricate silver nanoparticles. The formulation parameters optimisation was conducted using Box-Behnken Design (3×3 factorial design). The loading of capsaicin was confirmed by attenuated total reflectance-fourier transform infrared spectroscopy. Energy-dispersive X-ray spectroscopy-scanning electron microscopy (EDX-SEM) confirmed the existence of silver; net-like structure revealed in SEM and high-resolution transmission electron microscopy further confirmed the nano size of the formulation. Differential scanning calorimetry and X-ray diffraction demonstrated the capsaicin transformed into amorphous after encapsulated. An in-vitro microbial study showed that the 0.10 M formulation of AgCNPs exerted potent anti-bacterial activity, which can be considered an alternative anti-bacterial agent. It also displayed that the zone of inhibition was significantly high in gram-negative bacteria (E. coli) than gram-positive bacteria (S. aureus). Green synthesised AgCNPs showed highly significant anti-bacterial activity, which indicates that this formulation can be very promising for treating psoriasis.


Asunto(s)
Nanopartículas del Metal , Plata , Capsaicina/farmacología , Escherichia coli , Humanos , Staphylococcus aureus
10.
Int J Biol Macromol ; 185: 832-848, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34237361

RESUMEN

Over the last few years, several attempts have been made to replace petrochemical products with renewable and biodegradable components. The most challenging part of this approach is to obtain bio-based materials with properties and functions equivalent to those of synthetic products. Various naturally occurring polymers such as starch, collagen, alginate, cellulose, and chitin represent attractive candidates as they could reduce dependence on synthetic products and consequently positively impact the environment. Chitosan is also a unique bio-based polymer with excellent intrinsic properties. It is known for its anti-bacterial and film-forming properties, has high mechanical strength and good thermal stability. Nanotechnology has also applied chitosan-based materials in its most recent achievements. Therefore, numerous chitosan-based bionanocomposites with improved physical and chemical characteristics have been developed in an eco-friendly and cost-effective approach. This review discusses various sources of chitosan, its properties and methods of modification. Also, this work focuses on diverse preparation techniques of chitosan-based bionanocomposites and their emerging application in various sectors. Additionally, this review sheds light on future research scope with some drawbacks and challenges to motivate the researchers for future outstanding research works.


Asunto(s)
Antibacterianos/química , Quitosano/química , Antibacterianos/farmacología , Quitosano/farmacología , Estructura Molecular , Nanocompuestos , Resistencia al Corte , Termodinámica
11.
AAPS PharmSciTech ; 21(7): 285, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057878

RESUMEN

Currently, pharmaceutical research is directed wide range for developing new drugs for oral administration to target disease. Acyclovir formulation is having common issues of short half-life and poor permeability, causing messy treatment which results in patient incompliance. The present study formulates a lipid polymeric hybrid nanoparticles for antiviral acyclovir (ACV) agent with Phospholipon® 90G (lecithin), chitosan, and polyethylene glycol (PEG) to improve controlled release of the drugs. The study focused on the encapsulation of the ACV in lipid polymeric particle and their sustained delivery. The formulation developed for the self-assembly of chitosan and lecithin to form a shell encapsulating acyclovir, followed by PEGylation. Optimisation was performed via Box-Behnken Design (BBD), forming nanoparticles with size of 187.7 ± 3.75 nm, 83.81 ± 1.93% drug-entrapped efficiency (EE), and + 37.7 ± 1.16 mV zeta potential. Scanning electron microscopy and transmission electron microscopy images displayed spherical nanoparticles formation. Encapsulation of ACV and complexity with other physical parameters are confirmed through analysis using Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. Nanoparticle produced was capable of achieving 24-h sustained release in vitro on gastric and intestinal environments. Ex vivo study proved the improvement of acyclovir's apparent permeability from 2 × 10-6 to 6.46 × 10-6 cm s-1. Acyclovir new formulation was achieved to be stable up to 60 days for controlled release of the drugs. Graphical abstract.


Asunto(s)
Aciclovir/administración & dosificación , Antivirales/administración & dosificación , Aciclovir/farmacocinética , Animales , Antivirales/farmacocinética , Quitosano , Preparaciones de Acción Retardada , Composición de Medicamentos , Estabilidad de Medicamentos , Absorción Intestinal , Lecitinas , Lípidos/química , Nanopartículas , Tamaño de la Partícula , Polietilenglicoles , Conejos
12.
Int J Pharm ; 587: 119673, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32739388

RESUMEN

Transdermal drug delivery using microneedles is increasingly gaining interest due to the issues associated with oral drug delivery routes. Gastrointestinal route exposes the drug to acid and enzymes present in the stomach, leading to denaturation of the compound and resulting in poor bioavailability. Microneedle transdermal drug delivery addresses the problems linked to oral delivery and to relieves the discomfort of patients associated with injections to increase patient compliance. Microneedles can be broadly classified into five types: solid microneedles, coated microneedles, dissolving microneedles, hollow microneedles, and hydrogel-forming microneedles. The materials used for the preparation of microneedles dictate the different applications and features present in the microneedle. Polymeric microneedle arrays present an improved method for transdermal administration of drugs as they penetrate the skin stratum corneum barrier with minimal invasiveness. The review summarizes the importance of polymeric microneedle and discussed some of the most important therapeutic drugs in research, mainly protein drugs, vaccines and small molecule drugs in regenerative medicine.


Asunto(s)
Preparaciones Farmacéuticas , Polímeros , Administración Cutánea , Sistemas de Liberación de Medicamentos , Humanos , Microinyecciones , Agujas , Piel
13.
J Ethnopharmacol ; 262: 113138, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32726681

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Porcupine bezoar (PB) is used as folk medicine for various medical conditions including cancer treatment in Malaysia. However, its toxicity profile has never been thoroughly ascertained to confirm its safe nature as an efficacious traditional medicine in the treatment of cancer as well as other ailments. AIM OF THE STUDY: This study was aimed to reveal three different PBs' aqueous extracts(viz. PB-A, PB-B, PB-C) chemical constituent's profile using GC-MS analysis, anticancer property on A375, HeLa and MCF7 cancer cells, toxicity profile on zebrafish embryo morphology, EC50, LC50 and teratogenicity index. MATERIALS AND METHODS: PBs' extracts characterization was performed through GC-MS analysis, in vitro anticancer effect was carried out on A375, HeLa and MCF7 cancer cell lines and finally and toxicity properties on three different PBs aqueous extracts (viz. PB-A, PB-B, PB-C) were determined using zebrafish embryo model. RESULTS: The GC-MS analysis revealed 10 similar compounds in all PBs' extracts. Dilauryl thiodipropionate was found to be a major compound in all PBs' extracts followed by tetradecanoic acid. An in vitro anticancer study revealed PB extracts exerted median inhibition concentration (IC50) <50 µg/mL, on cancer cells viz. A375, HeLa and MCF7 with no significant toxicity on normal cells viz. NHDF cells. In vivo toxicity of PBs extracts found affecting tail detachment, hatching, craniofacial, brain morphology, soft tissues, edema, spinal, somites, notochord and cardiovascular system (brachycardia, disruption of blood circulation) deformities. The LC50 and EC50 demonstrated PB extracts effect as dose and time dependent with median concentration <150.0 µg/mL. Additionally, teratogenicity index (TI) viz. >1.0 revealed teratogenic property for PB extracts. CONCLUSIONS: The findings revealed that all three PBs aqueous extracts possessed anticancer activity and exhibited significant toxicological effects on zebrafish embryos with high teratogenicity index. Hence, its use as an anticancer agent requires further investigation and medical attentions to determine its safe dose.


Asunto(s)
Antineoplásicos/toxicidad , Bezoares , Factores Biológicos/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas/métodos , Puercoespines , Animales , Antineoplásicos/análisis , Antineoplásicos/aislamiento & purificación , Factores Biológicos/análisis , Factores Biológicos/aislamiento & purificación , Braquiuros , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Desarrollo Embrionario/fisiología , Femenino , Células HeLa , Humanos , Células MCF-7 , Masculino , Pez Cebra
14.
Curr Drug Metab ; 21(9): 649-660, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32384025

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) plays a most hindering role in drug delivery to the brain. Recent research comes out with the nanoparticles approach, is continuously working towards improving the delivery to the brain. Currently, polymeric nanoparticle is extensively involved in many therapies for spatial and temporal targeted areas delivery. METHODS: We did a non-systematic review, and the literature was searched in Google, Science Direct and PubMed. An overview is provided for the formulation of polymeric nanoparticles using different methods, effect of surface modification on the nanoparticle properties with types of polymeric nanoparticles and preparation methods. An account of different nanomedicine employed with therapeutic agent to cross the BBB alone with biodistribution of the drugs. RESULTS: We found that various types of polymeric nanoparticle systems are available and they prosper in delivering the therapeutic amount of the drug to the targeted area. The effect of physicochemical properties on nanoformulation includes change in their size, shape, elasticity, surface charge and hydrophobicity. Surface modification of polymers or nanocarriers is also vital in the formulation of nanoparticles to enhance targeting efficiency to the brain. CONCLUSION: More standardized methods for the preparation of nanoparticles and to assess the relationship of surface modification on drug delivery. While the preparation and its output like drug loading, particle size, and charge, permeation is always conflicted, so it requires more attention for the acceptance of nanoparticles for brain delivery.


Asunto(s)
Encéfalo/metabolismo , Portadores de Fármacos , Nanopartículas , Polímeros , Animales , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/administración & dosificación , Nanopartículas/química , Polímeros/administración & dosificación , Polímeros/química , Polímeros/farmacocinética , Propiedades de Superficie , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...