Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr ; 148(4): 510-517, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29659970

RESUMEN

Background: Supplementation of a high-fat obesogenic diet (HFD) with cholic acid (CA) suppresses the development of obesity, insulin resistance, and hepatic steatosis in mice. Objective: We investigated the role of fibroblast growth factor 21 (FGF21) in mediating the beneficial actions of CA on metabolic syndrome. Methods: Male 7-wk-old wild-type (WT) mice and FGF21 knockout (FGF21KO) mice were fed an HFD for 12 wk followed by a 4-wk period in which the mice were fed the HFD alone or supplemented with 0.5% CA. Body composition, gross energy efficiency, glucose tolerance, homeostasis model assessment of insulin resistance (HOMA-IR), and hepatic triacylglycerol (TG) concentrations were measured. Results: CA administration improved glucose tolerance and decreased total body fat accretion, gross energy efficiency, fasting blood glucose concentrations, and HOMA-IR in both WT mice and FGF21KO mice. The extent of the effect of CA on glucose tolerance, fasting blood glucose concentrations, and HOMA-IR was similar in both mouse strains, whereas the extent of the effect of CA on total body fat accretion and gross energy efficiency was 4.2- to 4.4-fold greater in FGF21KO mice than in WT mice. Further analyses showed that CA decreased hepatic TG concentrations in WT mice (49%) but had no effect on hepatic TG concentrations in FGF21KO mice. CA decreased the activation state of hepatic acetyl-CoA carboxylase 1 (ACC1) and adipose tissue hormone-sensitive lipase (HSL) in WT mice but was not effective in decreasing the activation of ACC1 and HSL in FGF21KO mice. Conclusions: FGF21 signaling is required for the beneficial effect of CA on hepatic TG accumulation in mice fed an HFD. We propose that FGF21 signaling potentiates the ability of CA to decrease the activation of ACC1 and HSL, key enzymes controlling the supply of long-chain fatty acid precursors for hepatic TG synthesis.


Asunto(s)
Ácido Cólico/farmacología , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Triglicéridos/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Ácido Cólico/uso terapéutico , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/metabolismo , Suplementos Dietéticos , Metabolismo Energético , Ácidos Grasos/metabolismo , Hígado Graso/etiología , Hígado Graso/prevención & control , Factores de Crecimiento de Fibroblastos/genética , Insulina/sangre , Resistencia a la Insulina , Masculino , Ratones , Ratones Noqueados , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control , Transducción de Señal , Esterol Esterasa/metabolismo
2.
J Biol Chem ; 292(13): 5239-5252, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28188284

RESUMEN

Previous studies have shown that glucagon cooperatively interacts with insulin to stimulate hepatic FGF21 gene expression. Here we investigated the mechanism by which glucagon and insulin increased FGF21 gene transcription in primary hepatocyte cultures. Transfection analyses demonstrated that glucagon plus insulin induction of FGF21 transcription was conferred by two activating transcription factor 4 (ATF4) binding sites in the FGF21 gene. Glucagon plus insulin stimulated a 5-fold increase in ATF4 protein abundance, and knockdown of ATF4 expression suppressed the ability of glucagon plus insulin to increase FGF21 expression. In hepatocytes incubated in the presence of insulin, treatment with a PKA-selective agonist mimicked the ability of glucagon to stimulate ATF4 and FGF21 expression. Inhibition of PKA, PI3K, Akt, and mammalian target of rapamycin complex 1 (mTORC1) suppressed the ability of glucagon plus insulin to stimulate ATF4 and FGF21 expression. Additional analyses demonstrated that chenodeoxycholic acid (CDCA) induced a 6-fold increase in ATF4 expression and that knockdown of ATF4 expression suppressed the ability of CDCA to increase FGF21 gene expression. CDCA increased the phosphorylation of eIF2α, and inhibition of eIF2α signaling activity suppressed CDCA regulation of ATF4 and FGF21 expression. These results demonstrate that glucagon plus insulin increases FGF21 transcription by stimulating ATF4 expression and that activation of cAMP/PKA and PI3K/Akt/mTORC1 mediates the effect of glucagon plus insulin on ATF4 expression. These results also demonstrate that CDCA regulation of FGF21 transcription is mediated at least partially by an eIF2α-dependent increase in ATF4 expression.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Glucagón/fisiología , Insulina/fisiología , Animales , Células Cultivadas , Ácido Quenodesoxicólico/farmacología , Sinergismo Farmacológico , Factor 2 Eucariótico de Iniciación/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucagón/farmacología , Hepatocitos/citología , Ratas , Transcripción Genética/efectos de los fármacos
3.
PLoS One ; 9(4): e94996, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24733293

RESUMEN

Previous studies have shown that whole body deletion of the glucagon receptor suppresses the ability of starvation to increase hepatic fibroblast growth factor 21 (FGF21) expression and plasma FGF21 concentration. Here, we investigate the mechanism by which glucagon receptor activation increases hepatic FGF21 production. Incubating primary rat hepatocyte cultures with glucagon, dibutyryl cAMP or forskolin stimulated a 3-4-fold increase in FGF21 secretion. The effect of these agents on FGF21 secretion was not associated with an increase in FGF21 mRNA abundance. Glucagon induction of FGF21 secretion was additive with the stimulatory effect of a PPARα activator (GW7647) on FGF21 secretion. Inhibition of protein kinase A (PKA) and downstream components of the PKA pathway [i.e. AMP-activated protein kinase and p38 MAPK] suppressed glucagon activation of FGF21 secretion. Incubating hepatocytes with an exchange protein directly activated by cAMP (EPAC)-selective cAMP analog [i.e. 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME)], stimulated a 3.9-fold increase FGF21 secretion, whereas inhibition of the EPAC effector, Rap1, suppressed glucagon activation of FGF21 secretion. Treatment of hepatocytes with insulin also increased FGF21 secretion. In contrast to glucagon, insulin activation of FGF21 secretion was associated with an increase in FGF21 mRNA abundance. Glucagon synergistically interacted with insulin to stimulate a further increase in FGF21 secretion and FGF21 mRNA abundance. These results demonstrate that glucagon increases hepatic FGF21 secretion via a posttranscriptional mechanism and provide evidence that both the PKA branch and EPAC branch of the cAMP pathway play a role in mediating this effect. These results also identify a novel synergistic interaction between glucagon and insulin in the regulation of FGF21 secretion and FGF21 mRNA abundance. We propose that this insulin/glucagon synergism plays a role in mediating the elevation in FGF21 production during starvation and conditions related to metabolic syndrome.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Glucagón/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hígado/metabolismo , Transcripción Genética/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Bucladesina/metabolismo , Colforsina/farmacología , Factores de Crecimiento de Fibroblastos/genética , Células Hep G2 , Humanos , Insulina/farmacología , Hígado/efectos de los fármacos , Masculino , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
4.
J Biol Chem ; 287(30): 25123-38, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22661717

RESUMEN

Previous studies have shown that starvation or consumption of a high fat, low carbohydrate (HF-LC) ketogenic diet induces hepatic fibroblast growth factor 21 (FGF21) gene expression in part by activating the peroxisome proliferator-activated receptor-α (PPARα). Using primary hepatocyte cultures to screen for endogenous signals that mediate the nutritional regulation of FGF21 expression, we identified two sources of PPARα activators (i.e. nonesterified unsaturated fatty acids and chylomicron remnants) that induced FGF21 gene expression. In addition, we discovered that natural (i.e. bile acids) and synthetic (i.e. GW4064) activators of the farnesoid X receptor (FXR) increased FGF21 gene expression and secretion. The effects of bile acids were additive with the effects of nonesterified unsaturated fatty acids in regulating FGF21 expression. FXR activation of FGF21 gene transcription was mediated by an FXR/retinoid X receptor binding site in the 5'-flanking region of the FGF21 gene. FGF19, a gut hormone whose expression and secretion is induced by intestinal bile acids, also increased hepatic FGF21 secretion. Deletion of FXR in mice suppressed the ability of an HF-LC ketogenic diet to induce hepatic FGF21 gene expression. The results of this study identify FXR as a new signaling pathway activating FGF21 expression and provide evidence that FXR activators work in combination with PPARα activators to mediate the stimulatory effect of an HF-LC ketogenic diet on FGF21 expression. We propose that the enhanced enterohepatic flux of bile acids during HF-LC consumption leads to activation of hepatic FXR and FGF19 signaling activity and an increase in FGF21 gene expression and secretion.


Asunto(s)
Factores de Crecimiento de Fibroblastos/biosíntesis , Regulación de la Expresión Génica/fisiología , Hepatocitos/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Elementos de Respuesta/fisiología , Animales , Ácidos y Sales Biliares/genética , Ácidos y Sales Biliares/metabolismo , Células Cultivadas , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Masculino , Ratones , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal/fisiología , Transcripción Genética/fisiología
5.
J Biol Chem ; 284(15): 10023-33, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19233843

RESUMEN

Previous studies have shown that administration of fibroblast growth factor-19 (FGF-19) reverses diabetes, hepatic steatosis, hyperlipidemia, and adipose accretion in animal models of obesity. To investigate the mechanism for this effect, we determined whether FGF-19 modulated hepatic fatty acid synthesis, a key process controlling glucose tolerance and triacylglycerol accumulation in liver, blood, and adipose tissue. Incubating primary hepatocyte cultures with recombinant FGF-19 suppressed the ability of insulin to stimulate fatty acid synthesis. This effect was associated with a reduction in the expression of lipogenic enzymes. FGF-19 also suppressed the insulin-induced expression of sterol regulatory element-binding protein-1c (SREBP-1c), a key transcriptional activator of lipogenic genes. FGF-19 inhibition of lipogenic enzyme expression was not mediated by alterations in the activity of the insulin signal transduction pathway or changes in the activity of ERK, p38 MAPK, and AMP-activated protein kinase (AMPK). In contrast, FGF-19 increased the activity of STAT3, an inhibitor of SREBP-1c expression and decreased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1beta), an activator of SREBP-1c activity. FGF-19 also increased the expression of small heterodimer partner (SHP), a transcriptional repressor that inhibits lipogenic enzyme expression via a SREBP-1c-independent mechanism. Inhibition of SREBP-1c activity by changes in STAT3 and PGC-1beta activity and inhibition of gene transcription by an elevation in SHP expression can explain the inhibition of lipogenesis caused by FGF-19. In summary, the inhibitory effect of FGF-19 on insulin activation of hepatic fatty acid synthesis constitutes a mechanism that would explain the beneficial effect of FGF-19 on metabolic syndrome.


Asunto(s)
Ácidos Grasos/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Hígado/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Colesterol 7-alfa-Hidroxilasa/metabolismo , Dimerización , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Humanos , Insulina/metabolismo , Modelos Biológicos , Ratas , Ratas Sprague-Dawley
6.
J Lipid Res ; 48(12): 2647-63, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17823458

RESUMEN

The therapeutic utility of liver X receptor (LXR) agonists in treating atherosclerosis is limited by an undesired accumulation of triglycerides in the blood and liver. This effect is caused by an increase in the transcription of genes involved in fatty acid synthesis. Here, we show that the primary bile acid, chenodeoxycholic acid (CDCA), antagonizes the stimulatory effect of the synthetic LXR agonist, T0-901317, on the expression of acetyl-coenzyme A carboxylase-alpha (ACCalpha) and other lipogenic enzymes in chick embryo hepatocyte cultures. CDCA inhibits T0-901317-induced ACCalpha transcription by suppressing the enhancer activity of a LXR response unit (-101 to -71 bp) that binds LXR and sterol-regulatory element binding protein-1 (SREBP-1). We also demonstrate that CDCA decreases the expression of SREBP-1 in the nucleus and the acetylation of histone H3 and H4 at the ACCalpha LXR response unit. The CDCA-mediated reduction in ACCalpha expression is associated with a decrease in the expression of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) and small heterodimer partner and an increase in the expression of fibroblast growth factor-19 (FGF-19). Ectopic expression of FGF-19 decreases T0-901317-induced ACCalpha expression. Inhibition of p38 mitogen-activated protein kinase (MAPK) and/or extracellular signal-regulated kinase (ERK) suppresses the effects of CDCA on the expression of ACCalpha, SREBP-1, PGC-1alpha, and FGF-19. These results demonstrate that CDCA inhibits T0-901317-induced ACCalpha transcription by suppressing the activity of LXR and SREBP-1. We postulate that p38 MAPK, ERK, PGC-1alpha, and FGF-19 are components of the signaling pathway(s) mediating the regulation of ACCalpha gene transcription by CDCA.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Ácido Quenodesoxicólico/farmacología , Proteínas de Unión al ADN/agonistas , Receptores Citoplasmáticos y Nucleares/agonistas , Sulfonamidas/antagonistas & inhibidores , Activación Transcripcional/efectos de los fármacos , Acetil-CoA Carboxilasa/metabolismo , Animales , Sitios de Unión , Embrión de Pollo , Hidrocarburos Fluorados , Receptores X del Hígado , Receptores Nucleares Huérfanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
J Lipid Res ; 47(11): 2451-61, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16931873

RESUMEN

In birds and mammals, agonists of the liver X receptor (LXR) increase the expression of enzymes that make up the fatty acid synthesis pathway. Here, we investigate the mechanism by which the synthetic LXR agonist, T0-901317, increases the transcription of the acetyl-coenzyme A carboxylase-alpha (ACC alpha) gene in chick embryo hepatocyte cultures. Transfection analyses demonstrate that activation of ACC alpha transcription by T0-901317 is mediated by a cis-acting regulatory unit (-101 to -71 bp) that is composed of a liver X receptor response element (LXRE) and a sterol-regulatory element (SRE). The SRE enhances the ability of the LXRE to activate ACC alpha transcription in the presence of T0-901317. Treating hepatocytes with T0-901317 increases the concentration of mature sterol-regulatory element binding protein-1 (SREBP-1) in the nucleus and the acetylation of histone H3 and histone H4 at the ACC alpha LXR response unit. These results indicate that T0-901317 increases hepatic ACC alpha transcription by directly activating LXR*retinoid X receptor (RXR) heterodimers and by increasing the activity of an accessory transcription factor (SREBP-1) that enhances ligand induced-LXR*RXR activity.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcripción Genética , Animales , Western Blotting , Embrión de Pollo , Proteínas de Unión al ADN/genética , Relación Dosis-Respuesta a Droga , Hepatocitos/citología , Hepatocitos/metabolismo , Hidrocarburos Fluorados , Ligandos , Receptores X del Hígado , Receptores Nucleares Huérfanos , Plásmidos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Elementos de Respuesta , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Esteroles/metabolismo , Sulfonamidas/farmacología , Transfección
8.
Am J Physiol Regul Integr Comp Physiol ; 291(1): R138-47, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16455759

RESUMEN

Cerulenin, a natural fatty acid synthase (FAS) inhibitor, and its synthetic analog C75 are hypothesized to alter the metabolism of neurons in the hypothalamus that regulate ingestive behavior to cause a profound decrease of food intake and an increase in metabolic rate, leading to body weight loss. The bulk of data exclusively originates from mammals (rodents); however, such effects are currently lacking in nonmammalian species. We have, therefore, addressed this issue in broiler chickens because this species is selected for high growth rate and high food intake and is prone to obesity. First, we demonstrate that FAS messenger and protein are expressed in the hypothalamus of chickens. FAS immunoreactivity was detected in a number of brain regions, including the nucleus paraventricularis magnocellularis and the nucleus infundibuli hypothalami, the avian equivalent of the mammalian arcuate nucleus, suggesting that FAS may be involved in the regulation of food intake. Second, we show that hypothalamic FAS gene expression was significantly (P < 0.05) decreased by overnight fasting similar to that in liver, indicating that hypothalamic FAS gene is regulated by energy status in chickens. Finally, to investigate the physiological consequences of in vivo inhibition of fatty acid synthesis on food intake, we administered cerulenin by intravenous injections (15 mg/kg) to 2-wk-old broiler chickens. Cerulenin administration significantly reduced food intake by 23 to 34% (P < 0.05 to P < 0.0001) and downregulated FAS and melanocortin receptors 1, 4, and 5 gene expression (P < 0.05). However, the known orexigenic (neuropeptide Y, agouti gene-related peptide, orexin, and orexin receptor) and anorexigenic (pro-opiomelanocortin and corticotropin-releasing hormone) neuropeptide mRNA levels remained unchanged after cerulenin treatment. These results suggest that the catabolic effect of cerulenin in chickens may be mediated through the melanocortin system rather than the other neuropeptides known to be involved in food intake regulation.


Asunto(s)
Depresores del Apetito/farmacología , Cerulenina/farmacología , Pollos/fisiología , Ácido Graso Sintasas/metabolismo , Receptores de Melanocortina/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Ácido Graso Sintasas/antagonistas & inhibidores , Conducta Alimentaria , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genotipo , Hipotálamo/citología , Hipotálamo/enzimología , Neuropéptidos/metabolismo , ARN Mensajero/metabolismo , Receptores de Melanocortina/genética
9.
Mol Cell Endocrinol ; 245(1-2): 43-52, 2005 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-16293364

RESUMEN

In chick embryo hepatocytes, activation of malic enzyme gene transcription by triiodothyronine (T3) is mediated by a T3 response unit (T3RU) that contains five T3 response elements (T3REs) plus five accessory elements that enhance T3 responsiveness conferred by the T3REs. Results from in vitro binding assays indicate that one of the accessory elements (region F) binds CCAAT/enhancer-binding protein-alpha (C/EBPalpha). Here, we investigated the role of C/EBPalpha in the regulation of malic enzyme transcription by T3. Transfection analyses demonstrated that the stimulation of T3RE function by region F did not require the presence of additional malic enzyme gene promoter sequences. Expression of a dominant negative C/EBP inhibited the ability of region F to stimulate T3 responsiveness. In chromatin immunoprecipitation assays, C/EBPalpha and TR associated with the malic enzyme T3RU in the absence and presence of T3 with the extent of the association being greater in the presence of T3. These observations indicate that C/EBPalpha interacts with TR on the malic enzyme T3RU to enhance T3 regulation of malic enzyme gene transcription. T3 treatment increased the acetylation of histones, decreased the recruitment of nuclear receptor corepressor and increased the recruitment of steroid receptor coactivator-1, CREB binding protein, and the thyroid hormone associated protein/mediator complex at the malic enzyme T3RU. In contrast, T3 treatment had no effect on the acetylation of histones and the recruitment of corepressors and coactivators at the T3RU that mediates the T3 activation of acetyl-CoA carboxylase-alpha gene transcription. We propose that differences between the malic enzyme T3RU and the ACCalpha T3RU in the ability of T3 to modulate histone acetylation and coregulatory protein recruitment are due to differences in the composition of the nuclear receptor complexes that bind these regulatory regions.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/fisiología , Regulación Enzimológica de la Expresión Génica , Histonas/metabolismo , Malato Deshidrogenasa/genética , Elementos de Respuesta/fisiología , Factores de Transcripción/metabolismo , Triyodotironina/fisiología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/fisiología , Acetilación , Animales , Secuencia de Bases , Células Cultivadas , Embrión de Pollo , Histona Acetiltransferasas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Inmunoprecipitación , Malato Deshidrogenasa/biosíntesis , Datos de Secuencia Molecular , Coactivador 1 de Receptor Nuclear , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/fisiología , Elementos de Respuesta/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transfección
10.
J Nutr ; 134(9): 2205-10, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15333705

RESUMEN

In mammalian liver, the mature form of sterol regulatory element-binding protein-1c (SREBP-1c) is an important activator of a wide array of genes involved in triacylglycerol biosynthesis. Starvation and feeding a high-carbohydrate, low-fat diet modulate the concentration of mature SREBP-1c primarily by a pretranslational mechanism. It is not known whether alterations in nutritional status regulate the concentration of SREBPs in nonmammalian species. In this study, we found that in previously starved chicks, feeding a high-carbohydrate, low-fat diet stimulated a robust increase (14-fold at 5 h of feeding) in the concentration of mature SREBP-1 in liver. Feeding a high-carbohydrate, low-fat diet also increased the concentration of precursor SREBP-1 and SREBP-1 messenger RNA in chick liver; however, the magnitude of this effect was substantially lower than that observed for mature SREBP-1. DNA binding experiments demonstrated that 3 protein complexes containing SREBP bound the acetyl-CoA carboxylase-alpha (ACCalpha) sterol regulatory element (SRE) in chick liver and that the binding activity of 2 of these complexes was increased by consumption of a high-carbohydrate, low-fat diet. Additional analyses showed that feeding a high-carbohydrate, low-fat diet had no effect on the concentration of mature SREBP-2 and the binding of SREBP-2 to the ACCalpha SRE in chick liver. These results indicate that alterations in the concentration of mature SREBP-1 play a role in mediating the effects of starvation and feeding a high-carbohydrate, low-fat diet on ACCalpha transcription in chick liver and that diet-induced changes in mature SREBP-1 concentration in chick liver are mediated primarily by a posttranslational mechanism.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Pollos/metabolismo , Proteínas de Unión al ADN/metabolismo , Dieta con Restricción de Grasas , Carbohidratos de la Dieta/administración & dosificación , Inanición/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas de Unión al ADN/genética , Isoenzimas/metabolismo , Hígado/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
J Lipid Res ; 44(2): 356-68, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12576518

RESUMEN

In chick embryo hepatocytes, activation of acetyl-CoA carboxylase-alpha (ACCalpha) transcription by 3,5,3'-triiodothyronine (T3) is mediated by a cis-acting regulatory unit (-101 to -71 bp) that binds the nuclear T3 receptor (TR) and sterol regulatory element-binding protein-1 (SREBP-1). SREBP-1 directly interacts with TR on the ACCalpha gene to enhance T3-induced transcription. Here, we show that treating hepatocytes with T3 or insulin stimulates a 4-fold increase in the concentration of the mature, active form of SREBP-1. When T3 and insulin are added together, a 7-fold increase in the mature SREBP-1 concentration is observed. Time course studies indicate that the T3-induced increase in mature SREBP-1 abundance is closely associated with changes in ACCalpha transcription and that the mechanism mediating the effect of T3 on mature SREBP-1 is distinct from that mediating the effect of insulin. Transfection analyses indicate that inhibition of ACCalpha transcription by cAMP or hexanoate is mediated by ACCalpha sequences between -101 and -71 bp. Treatment with cAMP or hexanoate suppresses the increase in mature SREBP-1 abundance caused by T3 and insulin. These results establish a new interaction between the SREBP-1 and TR signaling pathways and provide evidence that SREBP-1 plays an active role in mediating the effects of T3, insulin, cAMP, and hexanoate on ACCalpha transcription.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Ácidos Grasos/metabolismo , Hepatocitos/fisiología , Insulina/metabolismo , Factores de Transcripción , Triyodotironina/metabolismo , Acetil-CoA Carboxilasa/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Caproatos/metabolismo , Células Cultivadas , Embrión de Pollo , Proteínas de Unión al ADN/genética , Ácidos Grasos/química , Regulación Enzimológica de la Expresión Génica , Genes Reporteros , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Insulina/farmacología , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Fracciones Subcelulares/química , Fracciones Subcelulares/metabolismo , Transcripción Genética/efectos de los fármacos , Triyodotironina/farmacología
12.
J Biol Chem ; 278(10): 7964-72, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12493735

RESUMEN

Carnitine palmitoyltransferase-I (CPT-I) catalyzes the rate-controlling step of fatty acid oxidation. CPT-I converts long-chain fatty acyl-CoAs to acylcarnitines for translocation across the mitochondrial membrane. The mRNA levels and enzyme activity of the liver isoform, CPT-Ialpha, are greatly increased in the liver of hyperthyroid animals. Thyroid hormone (T3) stimulates CPT-Ialpha transcription far more robustly in the liver than in non-hepatic tissues. We have shown that the thyroid hormone receptor (TR) binds to a thyroid hormone response element (TRE) located in the CPT-Ialpha promoter. In addition, elements in the first intron participate in the T3 induction of CPT-Ialpha gene expression, but the CPT-Ialpha intron alone cannot confer a T3 response. We found that deletion of sequences in the first intron between +653 and +744 decreased the T3 induction of CPT-Ialpha. Upstream stimulatory factor (USF) and CCAAT enhancer binding proteins (C/EBPs) bind to elements within this region, and these factors are required for the T3 response. The binding of TR and C/EBP to the CPT-Ialpha gene in vivo was shown by the chromatin immunoprecipitation assay. We determined that TR can physically interact with USF-1, USF-2, and C/EBPalpha. Transgenic mice were created that carry CPT-Ialpha-luciferase transgenes with or without the first intron of the CPT-Ialpha gene. In these mouse lines, the first intron is required for T3 induction as well as high levels of hepatic expression. Our data indicate that the T3 stimulates CPT-Ialpha gene expression in the liver through a T3 response unit consisting of the TRE in the promoter and additional factors, C/EBP and USF, bound in the first intron.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Regulación de la Expresión Génica/fisiología , Intrones , Hígado/enzimología , Regiones Promotoras Genéticas , Triyodotironina/fisiología , Animales , Secuencia de Bases , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Carnitina O-Palmitoiltransferasa/biosíntesis , Carnitina O-Palmitoiltransferasa/metabolismo , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Inducción Enzimática , Luciferasas/genética , Ratones , Ratones Transgénicos , Receptores de Hormona Tiroidea/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
13.
Circ Res ; 91(1): 32-7, 2002 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-12114319

RESUMEN

We have previously demonstrated that growth of embryonic chick atrial cells in medium supplemented with lipoprotein-depleted serum (LPDS) resulted in a coordinate increase in the expression of genes involved in the parasympathetic response of the heart (the M2 muscarinic receptor; the alpha-subunit of the heterotrimeric G protein, Galpha(i2); and the inward rectifying K+ channel protein, GIRK1) and a marked increase in the negative chronotropic response of atrial cells to muscarinic stimulation. In the present study, we demonstrate that regulation of Galpha(i2) promoter activity by LPDS is mediated by the binding of a sterol regulatory element binding protein (SREBP) to a sterol regulatory element (SRE) in the Galpha(i2) promoter. Deletion and point mutation of this putative SRE interfered with the regulation of the Galpha(i2) promoter by SREBP and LPDS. Furthermore gel shift assays demonstrated that point mutations in the putative Galpha(i2) SRE markedly inhibited the binding of purified SREBP to oligonucleotides containing the Galpha(i2) SRE sequence. The expression of a dominant-negative SREBP mutant interfered with LPDS stimulation of Galpha(i2) promoter activity. Finally, we demonstrate that SREBP-1 is markedly more potent than SREBP-2 for the stimulation of Galpha(i2) promoter activity, suggesting that SREBP1 may play a role in the regulation of Galpha(i2) expression. These are the first data to demonstrate SREBP regulation of a protein not involved in lipid homeostasis and suggest a new relationship between lipid metabolism and the parasympathetic response of the heart.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/fisiología , Proteínas de Unión al ADN/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Atrios Cardíacos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción , Animales , Sitios de Unión/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Embrión de Pollo , Medios de Cultivo/farmacología , Proteínas de Unión al ADN/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2 , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Regulación de la Expresión Génica/efectos de los fármacos , Atrios Cardíacos/citología , Atrios Cardíacos/efectos de los fármacos , Lipoproteínas/farmacología , Luciferasas/genética , Luciferasas/metabolismo , Mutación , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Transfección
14.
J Biol Chem ; 277(22): 19554-65, 2002 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-11907029

RESUMEN

In previous work, we characterized a 3,5,3'-triiodothyronine response element (T3RE) in acetyl-CoA carboxylase-alpha (ACCalpha) promoter 2 that mediated 3,5,3'-triiodothyronine (T3) regulation of ACCalpha transcription in chick embryo hepatocytes. Sequence comparison analysis revealed the presence of sterol regulatory element-1 (SRE-1) located 5 bp downstream of the ACCalpha T3RE. Here, we investigated the role of this SRE-1 in modulating T3 regulation of ACCalpha transcription. Transfection analyses demonstrated that the SRE-1 enhanced T3-induced ACCalpha transcription by more than 2-fold in hepatocytes. The effect of the SRE-1 on T3 responsiveness required the presence of the T3RE in its native orientation. In pull-down experiments, the mature form of sterol regulatory element-binding protein-1 (SREBP-1) specifically bound the alpha-isoform of the nuclear T3 receptor (TR), and the presence of T3 enhanced this interaction. A region of TRalpha containing the DNA-binding domain plus flanking sequences (amino acids 21-157) was required for interaction with SREBP-1, and a region of SREBP-1 containing the basic helix-loop-helix-leucine zipper domain (amino acids 300-389) was required for interaction with TRalpha. In gel mobility shift experiments, TRalpha, retinoid X receptor-alpha, and mature SREBP-1 formed a tetrameric complex on a DNA probe containing the ACCalpha T3RE and SRE-1, and the presence of T3 enhanced the formation of this complex. Formation of the tetrameric complex stabilized the binding of SREBP-1 to the SRE-1. These results indicate that SREBP-1 directly interacts with TR-retinoid X receptor in an orientation-specific manner to enhance T3-induced ACCalpha transcription in hepatocytes. T3 regulation of ACCalpha transcription in nonhepatic cell cultures such as chick embryo fibroblasts is markedly reduced compared with that of chick embryo hepatocytes. Here, we also show that alterations in SREBP expression play a role in mediating cell type-dependent differences in T3 regulation of ACCalpha transcription.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Hepatocitos/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Factores de Transcripción , Transcripción Genética , Secuencias de Aminoácidos , Animales , Western Blotting , Membrana Celular/metabolismo , Embrión de Pollo , Pollos , Cisteína/metabolismo , ADN Complementario/metabolismo , Dimerización , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Glutatión Transferasa/metabolismo , Humanos , Modelos Genéticos , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Factores de Tiempo , Transfección
15.
Biochem J ; 361(Pt 2): 391-400, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11772412

RESUMEN

In chick embryo hepatocytes (CEH), stimulation of malic enzyme transcription by 3,3',5-tri-iodothyronine (T3) is mediated by a liver-specific and T3-inducible DNase I hypersensitive region (-3910 to -3640 bp) in the malic enzyme gene. Previous studies have shown that this region contains a cluster of five T3 response elements (T3REs), referred to as a T3 response unit (T3RU), plus three accessory elements that enhance T3 responsiveness conferred by the T3RU. Here we report the identification of two additional accessory elements within the -3910 to -3640 bp region. Each element augments T3 regulation of malic enzyme transcription in CEH. One element, designated region G (-3681/-3666 bp), contains a single nuclear-hormone-receptor half-site that binds the orphan receptor chicken ovalbumin upstream-promoter transcription factor. The other element, designated region H (-3655/-3646 bp), contains an E-box motif that binds proteins of unknown identity. Stimulation of T3RE function by region G or region H does not require the presence of additional malic enzyme sequences. In contrast with the stimulatory effects of regions G and H on T3 responsiveness in CEH, neither of these elements is effective in modulating T3 responsiveness in chick embryo fibroblasts (CEF). Instead, region H functions as a T3-insensitive repressor of transcription in CEF. These results indicate that chicken ovalbumin upstream-promoter transcription factor and E-box-binding proteins interact with nuclear T3 receptors to enhance T3 regulation of malic enzyme transcription in CEH and that alterations in region G and region H activities contribute to diminished T3 regulation of malic enzyme transcription in CEF relative to CEH. As the pattern of protein binding to regions G and H varies substantially between CEH and CEF, the mechanism for cell-type-dependent differences in region G and region H activity may involve alterations in protein binding to these T3 accessory elements.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Hepatocitos/enzimología , Malato Deshidrogenasa/genética , Receptores de Esteroides , Factores de Transcripción/fisiología , Triyodotironina/farmacología , Animales , Sitios de Unión , Factores de Transcripción COUP , Células Cultivadas , Embrión de Pollo , ADN , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Mutación , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...